Zhiping LI , Yafei ZHANG , Tianyu PAN , Jian ZHANG
{"title":"快速推进-机身一体化仿真中带有畸变进气道的改进型射流体力模型","authors":"Zhiping LI , Yafei ZHANG , Tianyu PAN , Jian ZHANG","doi":"10.1016/j.cja.2023.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Streamwise Body Force Model (SBFM) could be used to simulate the force of blade on the airflow, resulting in rapid propulsion-airframe integrated simulation. However, when subjected to inlet distortion, the upstream flow field of fan stage is redistributed, which causes inaccurate prediction of fan stage performance. As inspired by the upstream influence of compressor, this paper aims to present a modification strategy for SBFM method to predict the compressor performance under circumferential inlet distortion without any knowledge of compressor geometry. Based on the linearized motion equation, the Upstream Influence Model (UIM) is introduced to predict the upstream flow field redistribution. Then the theoretical Mach number at Aerodynamic Interface Plane (AIP) position is calculated and selected to determine the corresponding body force coefficients based on the functional relationship between body force coefficients and Mach number, thus the upstream influence of compressor could be accurately quantified and the Modified Streamwise Body Force Model (MSBFM) could be established. Two studied cases are calculated with different methods and the upstream flow fields are analyzed. The prediction error of MSBFM method for compressor adiabatic efficiency is less than 3%, and the calculation efficiency is improved 20 times under the condition of ensuring computing accuracy. The MSBFM method has the potential for rapid propulsion-airframe integrated simulation.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"36 12","pages":"Pages 202-213"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123002820/pdfft?md5=6315f262f4cff028523e57757110e1af&pid=1-s2.0-S1000936123002820-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A modified streamwise body force model of fan with distorted inflow for rapid propulsion-airframe integrated simulation\",\"authors\":\"Zhiping LI , Yafei ZHANG , Tianyu PAN , Jian ZHANG\",\"doi\":\"10.1016/j.cja.2023.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Streamwise Body Force Model (SBFM) could be used to simulate the force of blade on the airflow, resulting in rapid propulsion-airframe integrated simulation. However, when subjected to inlet distortion, the upstream flow field of fan stage is redistributed, which causes inaccurate prediction of fan stage performance. As inspired by the upstream influence of compressor, this paper aims to present a modification strategy for SBFM method to predict the compressor performance under circumferential inlet distortion without any knowledge of compressor geometry. Based on the linearized motion equation, the Upstream Influence Model (UIM) is introduced to predict the upstream flow field redistribution. Then the theoretical Mach number at Aerodynamic Interface Plane (AIP) position is calculated and selected to determine the corresponding body force coefficients based on the functional relationship between body force coefficients and Mach number, thus the upstream influence of compressor could be accurately quantified and the Modified Streamwise Body Force Model (MSBFM) could be established. Two studied cases are calculated with different methods and the upstream flow fields are analyzed. The prediction error of MSBFM method for compressor adiabatic efficiency is less than 3%, and the calculation efficiency is improved 20 times under the condition of ensuring computing accuracy. The MSBFM method has the potential for rapid propulsion-airframe integrated simulation.</p></div>\",\"PeriodicalId\":55631,\"journal\":{\"name\":\"Chinese Journal of Aeronautics\",\"volume\":\"36 12\",\"pages\":\"Pages 202-213\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1000936123002820/pdfft?md5=6315f262f4cff028523e57757110e1af&pid=1-s2.0-S1000936123002820-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Aeronautics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000936123002820\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123002820","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A modified streamwise body force model of fan with distorted inflow for rapid propulsion-airframe integrated simulation
Streamwise Body Force Model (SBFM) could be used to simulate the force of blade on the airflow, resulting in rapid propulsion-airframe integrated simulation. However, when subjected to inlet distortion, the upstream flow field of fan stage is redistributed, which causes inaccurate prediction of fan stage performance. As inspired by the upstream influence of compressor, this paper aims to present a modification strategy for SBFM method to predict the compressor performance under circumferential inlet distortion without any knowledge of compressor geometry. Based on the linearized motion equation, the Upstream Influence Model (UIM) is introduced to predict the upstream flow field redistribution. Then the theoretical Mach number at Aerodynamic Interface Plane (AIP) position is calculated and selected to determine the corresponding body force coefficients based on the functional relationship between body force coefficients and Mach number, thus the upstream influence of compressor could be accurately quantified and the Modified Streamwise Body Force Model (MSBFM) could be established. Two studied cases are calculated with different methods and the upstream flow fields are analyzed. The prediction error of MSBFM method for compressor adiabatic efficiency is less than 3%, and the calculation efficiency is improved 20 times under the condition of ensuring computing accuracy. The MSBFM method has the potential for rapid propulsion-airframe integrated simulation.
期刊介绍:
Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.