纳米太阳能驱动的界面蒸发:先进的设计和机会

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2023-03-22 DOI:10.1007/s12274-023-5488-2
Xin Zhao, Xiangtong Meng, Hongqi Zou, Yanjun Zhang, Yangjun Ma, Yadong Du, Yuan Shao, Jun Qi, Jieshan Qiu
{"title":"纳米太阳能驱动的界面蒸发:先进的设计和机会","authors":"Xin Zhao,&nbsp;Xiangtong Meng,&nbsp;Hongqi Zou,&nbsp;Yanjun Zhang,&nbsp;Yangjun Ma,&nbsp;Yadong Du,&nbsp;Yuan Shao,&nbsp;Jun Qi,&nbsp;Jieshan Qiu","doi":"10.1007/s12274-023-5488-2","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12274-023-5488-2.pdf","citationCount":"11","resultStr":"{\"title\":\"Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities\",\"authors\":\"Xin Zhao,&nbsp;Xiangtong Meng,&nbsp;Hongqi Zou,&nbsp;Yanjun Zhang,&nbsp;Yangjun Ma,&nbsp;Yadong Du,&nbsp;Yuan Shao,&nbsp;Jun Qi,&nbsp;Jieshan Qiu\",\"doi\":\"10.1007/s12274-023-5488-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12274-023-5488-2.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-023-5488-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-023-5488-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

摘要

太阳能驱动界面蒸发(SDIE)是解决全球水资源短缺和水污染的一种有前景的途径。纳米材料(如等离子体金属、无机/有机半导体和碳纳米材料)和相关纳米化学在宽带吸收、电子结构调整和表面/界面化学操作方面引起了越来越多的关注。此外,纳米材料的组装有助于太阳蒸发过程中水的传质、热管理和焓调节。迄今为止,许多纳米材料和结构已经被开发出来,以改善太阳能吸收、热管理(即热限制和传热)和水管理(即活化、蒸发和补充)。本文对SDIE中纳米材料的组成和结构工程进行了系统的综述,包括尺寸和形态效应、纳米结构优化和结构-性能关系解耦。本文还综述了纳米化学(如制备化学和结构化学)应用于纳米材料概念设计的最新进展。最后,综述了纳米材料用于太阳能蒸发的主要挑战和未来前景。本文旨在从材料科学和化学工程的角度出发,为高效SDIE纳米材料的设计和构建提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nano-enabled solar driven-interfacial evaporation: Advanced design and opportunities

Solar-driven interfacial evaporation (SDIE) is emerging as a promising pathway to solving the worldwide water shortage and water pollution. Nanomaterials (e.g., plasmonic metals, inorganic/organic semiconductors, and carbon nanomaterials) and related nanochemistry have attracted increasing attention for the solar-to-vapor process in terms of broadband absorption, electronic structure adjustment, and surface/interface chemistry manipulation. Furthermore, the assembly of nanomaterials can contribute to the mass transfer, heat management, and enthalpy regulation of water during solar evaporation. To date, numerous nano-enabled materials and structures have been developed to improve the solar absorption, heat management (i.e., heat confinement and heat transfer), and water management (i.e., activation, evaporation, and replenishment). In this review, we focus on a systematical summary about the composition and structure engineering of nanomaterials in SDIE, including size and morphology effects, nanostructure optimizations, and structure-property relationship decoupling. This review also surveys recent advances in nanochemistry (e.g., preparation chemistry and structural chemistry) deployed to conceptual design of nanomaterials. Finally, the key challenges and future perspectives of nanomaterials for solar evaporation are overviewed. This review aims at providing guidance for the design and construction of nanomaterials for high-efficiency SDIE on the basis of the aspects of materials science and chemical engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays Colloidal II–VI nanoplatelets for optoelectronic devices: Progress and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1