{"title":"检验质料的格兰杰非因果性","authors":"T. Bouezmarni, Mohamed Doukali, A. Taamouti","doi":"10.1080/07474938.2023.2246823","DOIUrl":null,"url":null,"abstract":"This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests. ABSTRACT This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Granger non-causality in expectiles\",\"authors\":\"T. Bouezmarni, Mohamed Doukali, A. Taamouti\",\"doi\":\"10.1080/07474938.2023.2246823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests. ABSTRACT This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2246823\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2246823","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests. ABSTRACT This paper aims to derive a consistent test of Granger causality at a given expectile. We also propose a sup-Wald test for jointly testing Granger causality at all expectiles that has the correct asymptotic size and power properties. Expectiles have the advantage of capturing similar information as quantiles, but they also have the merit of being much more straightforward to use than quantiles, since they are de(cid:133)ne as least squares analogue of quantiles. Studying Granger causality in expectiles is practically simpler and allows us to examine the causality at all levels of the conditional distribution. Moreover, testing Granger causality at all expectiles provides a su¢ cient condition for testing Granger causality in distribution. A Monte Carlo simulation study reveals that our tests have good (cid:133)nite-sample size and power properties for a variety of data-generating processes and di⁄erent sample sizes. Finally, we provide two empirical applications to illustrate the usefulness of the proposed tests.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.