生物医学工程用反应性水凝胶微纤维

Smart medicine Pub Date : 2022-12-27 eCollection Date: 2022-12-01 DOI:10.1002/SMMD.20220003
Jiahui Guo, Zhiqiang Luo, Fengyuan Wang, Hongcheng Gu, Minli Li
{"title":"生物医学工程用反应性水凝胶微纤维","authors":"Jiahui Guo, Zhiqiang Luo, Fengyuan Wang, Hongcheng Gu, Minli Li","doi":"10.1002/SMMD.20220003","DOIUrl":null,"url":null,"abstract":"<p><p>Responsive hydrogel microfibers can realize multiple controllable changes in shapes or properties under the stimulation of the surrounding environment, and are called as intelligent biomaterials. Recently, these responsive hydrogel microfibers have been proved to possess significant biomedical values, and remarkable progress has been achieved in biomedical engineering applications, including drug delivery, biosensors and clinical therapy, etc. In this review, the latest research progress and application prospects of responsive hydrogel microfibers in biomedical engineering are summarized. We first introduce the common preparation strategies of responsive hydrogel microfibers. Subsequently, the response characteristics and the biomedical applications of these materials are discussed. Finally, the present opportunities and challenges as well as the prospects for future development are critically analyzed.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220003"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235791/pdf/","citationCount":"0","resultStr":"{\"title\":\"Responsive hydrogel microfibers for biomedical engineering.\",\"authors\":\"Jiahui Guo, Zhiqiang Luo, Fengyuan Wang, Hongcheng Gu, Minli Li\",\"doi\":\"10.1002/SMMD.20220003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Responsive hydrogel microfibers can realize multiple controllable changes in shapes or properties under the stimulation of the surrounding environment, and are called as intelligent biomaterials. Recently, these responsive hydrogel microfibers have been proved to possess significant biomedical values, and remarkable progress has been achieved in biomedical engineering applications, including drug delivery, biosensors and clinical therapy, etc. In this review, the latest research progress and application prospects of responsive hydrogel microfibers in biomedical engineering are summarized. We first introduce the common preparation strategies of responsive hydrogel microfibers. Subsequently, the response characteristics and the biomedical applications of these materials are discussed. Finally, the present opportunities and challenges as well as the prospects for future development are critically analyzed.</p>\",\"PeriodicalId\":74816,\"journal\":{\"name\":\"Smart medicine\",\"volume\":\" \",\"pages\":\"e20220003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235791/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/SMMD.20220003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

响应性水凝胶微纤维可在周围环境的刺激下实现形状或性质的多重可控变化,被称为智能生物材料。近年来,这些响应性水凝胶微纤维已被证实具有显著的生物医学价值,并在药物输送、生物传感器和临床治疗等生物医学工程应用领域取得了显著进展。本综述总结了响应性水凝胶微纤维在生物医学工程中的最新研究进展和应用前景。我们首先介绍了反应性水凝胶微纤维的常见制备策略。随后,讨论了这些材料的响应特性和生物医学应用。最后,批判性地分析了当前的机遇和挑战以及未来的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Responsive hydrogel microfibers for biomedical engineering.

Responsive hydrogel microfibers can realize multiple controllable changes in shapes or properties under the stimulation of the surrounding environment, and are called as intelligent biomaterials. Recently, these responsive hydrogel microfibers have been proved to possess significant biomedical values, and remarkable progress has been achieved in biomedical engineering applications, including drug delivery, biosensors and clinical therapy, etc. In this review, the latest research progress and application prospects of responsive hydrogel microfibers in biomedical engineering are summarized. We first introduce the common preparation strategies of responsive hydrogel microfibers. Subsequently, the response characteristics and the biomedical applications of these materials are discussed. Finally, the present opportunities and challenges as well as the prospects for future development are critically analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Dear-PSM: A deep learning-based peptide search engine enables full database search for proteomics. Developing functional hydrogels for treatment of oral diseases Sustainable synthesis of carbon dots via bio‐waste recycling for biomedical imaging Engineering strategies for apoptotic bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1