{"title":"电解质阴离子吸附对单原子电催化剂活性和稳定性的影响","authors":"Tipaporn Patniboon, H. Hansen","doi":"10.1063/5.0125654","DOIUrl":null,"url":null,"abstract":"A single metal site incorporated in N-doped carbon (M/N/C) is a promising electrocatalyst. Here, we perform a computation investigation of the effect of electrolyte anion adsorption on the activity and stability of single-atom catalysts (MN4) with M as transition metal and p-block metal. The MN4 site on two different graphene structures (bulk graphene and graphene edge) is studied under electrochemical conditions for the oxygen reduction reaction (ORR) and the CO2 reduction reaction (CO2RR). Because of the two-dimensional nature of the catalyst, reaction intermediates and electrolyte ions can interact with both sides of the single-atom catalyst. As a result, the electrolyte anions compete with water and adsorbate on the single metal site, in some cases either poisoning or modifying the catalyst activity and thermodynamic stability. We find most electrolyte anions adsorbs on the single metal site under ORR conditions but not at the lower potentials for the CO2RR. Still, the adsorption of water and gas molecules can occur under CO2RR conditions. For example, under ORR conditions, the thermodynamic driving force of the *SO4-FeN4 site in the 0.1 M H2SO4 solution is about 0.47–0.56 eV lower than the *O-FeN4 site in water, depending on the local carbon structure. Additionally, the stabilization by electrolyte anions depends on the nature of the metal atom. Our study demonstrates the important role of electrolytes and the coordination environment for the activity and stability of the M/N/C catalyst.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of electrolyte anion adsorption on the activity and stability of single atom electrocatalysts\",\"authors\":\"Tipaporn Patniboon, H. Hansen\",\"doi\":\"10.1063/5.0125654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single metal site incorporated in N-doped carbon (M/N/C) is a promising electrocatalyst. Here, we perform a computation investigation of the effect of electrolyte anion adsorption on the activity and stability of single-atom catalysts (MN4) with M as transition metal and p-block metal. The MN4 site on two different graphene structures (bulk graphene and graphene edge) is studied under electrochemical conditions for the oxygen reduction reaction (ORR) and the CO2 reduction reaction (CO2RR). Because of the two-dimensional nature of the catalyst, reaction intermediates and electrolyte ions can interact with both sides of the single-atom catalyst. As a result, the electrolyte anions compete with water and adsorbate on the single metal site, in some cases either poisoning or modifying the catalyst activity and thermodynamic stability. We find most electrolyte anions adsorbs on the single metal site under ORR conditions but not at the lower potentials for the CO2RR. Still, the adsorption of water and gas molecules can occur under CO2RR conditions. For example, under ORR conditions, the thermodynamic driving force of the *SO4-FeN4 site in the 0.1 M H2SO4 solution is about 0.47–0.56 eV lower than the *O-FeN4 site in water, depending on the local carbon structure. Additionally, the stabilization by electrolyte anions depends on the nature of the metal atom. Our study demonstrates the important role of electrolytes and the coordination environment for the activity and stability of the M/N/C catalyst.\",\"PeriodicalId\":72559,\"journal\":{\"name\":\"Chemical physics reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical physics reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0125654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0125654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
摘要
N掺杂碳(M/N/C)中的单一金属位点是一种很有前途的电催化剂。在此,我们对电解质阴离子吸附对以M为过渡金属和p嵌段金属的单原子催化剂(MN4)的活性和稳定性的影响进行了计算研究。在氧还原反应(ORR)和CO2还原反应(CO2RR)的电化学条件下,研究了两种不同石墨烯结构(体石墨烯和石墨烯边缘)上的MN4位点。由于催化剂的二维性质,反应中间体和电解质离子可以与单原子催化剂的两侧相互作用。结果,电解质阴离子与水竞争,并在单个金属位点上吸附,在某些情况下毒害或改变催化剂活性和热力学稳定性。我们发现,在ORR条件下,大多数电解质阴离子吸附在单个金属位点上,但在CO2RR的较低电势下没有。尽管如此,水和气体分子的吸附可以在CO2RR条件下发生。例如,在ORR条件下,0.1 M H2SO4溶液中*SO4-FeN4位点的热力学驱动力约为0.47–0.56 eV低于水中的*O-FeN4位点。此外,电解质阴离子的稳定性取决于金属原子的性质。我们的研究证明了电解质和配位环境对M/N/C催化剂的活性和稳定性的重要作用。
Effects of electrolyte anion adsorption on the activity and stability of single atom electrocatalysts
A single metal site incorporated in N-doped carbon (M/N/C) is a promising electrocatalyst. Here, we perform a computation investigation of the effect of electrolyte anion adsorption on the activity and stability of single-atom catalysts (MN4) with M as transition metal and p-block metal. The MN4 site on two different graphene structures (bulk graphene and graphene edge) is studied under electrochemical conditions for the oxygen reduction reaction (ORR) and the CO2 reduction reaction (CO2RR). Because of the two-dimensional nature of the catalyst, reaction intermediates and electrolyte ions can interact with both sides of the single-atom catalyst. As a result, the electrolyte anions compete with water and adsorbate on the single metal site, in some cases either poisoning or modifying the catalyst activity and thermodynamic stability. We find most electrolyte anions adsorbs on the single metal site under ORR conditions but not at the lower potentials for the CO2RR. Still, the adsorption of water and gas molecules can occur under CO2RR conditions. For example, under ORR conditions, the thermodynamic driving force of the *SO4-FeN4 site in the 0.1 M H2SO4 solution is about 0.47–0.56 eV lower than the *O-FeN4 site in water, depending on the local carbon structure. Additionally, the stabilization by electrolyte anions depends on the nature of the metal atom. Our study demonstrates the important role of electrolytes and the coordination environment for the activity and stability of the M/N/C catalyst.