利用网络药理学和分子对接工具研究麻黄石膏治疗呼吸道疾病的潜在机制

IF 4.3 3区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE World Journal of Traditional Chinese Medicine Pub Date : 2023-04-01 DOI:10.4103/2311-8571.378172
Can Huang, Ling Yuan, Yang Niu, Yating Yang, Yi-Fan Yang, Yi Nan, Hong-Li Dou, J. Japhet
{"title":"利用网络药理学和分子对接工具研究麻黄石膏治疗呼吸道疾病的潜在机制","authors":"Can Huang, Ling Yuan, Yang Niu, Yating Yang, Yi-Fan Yang, Yi Nan, Hong-Li Dou, J. Japhet","doi":"10.4103/2311-8571.378172","DOIUrl":null,"url":null,"abstract":"Objective: The objective of this study was to investigate the potential mechanisms of ephedra-gypsum in the treatment of respiratory diseases (RDs) using network pharmacology and molecular docking techniques. Materials and Methods: The TCMSP and UniProt databases were used to mine the active components and targets of ephedra-gypsum, and the targets of RD were screened using the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases. The protein-protein interaction network graph was created using the drug-disease intersection targets in the STRING database. The network diagram was analyzed using Cytoscape 3.9.1's topology function. The gene ontology (GO) and KEGG enrichment analyses were performed using the DAVID platform. Molecular docking bioactivity validation of the main active components and core targets was performed using AutoDock and PyMOL software. Results: Twenty-four compounds were screened, and 113 drug-disease targets overlapped. In total, 358 biological processes, 67 molecular functions, 38 cellular components of GO, and 139 pathways were identified. Molecular docking analysis demonstrated the strong binding ability of tumor protein 53 (TP53)-luteolin. Conclusion: The core components of ephedra-gypsum, such as quercetin, luteolin, kaempferol, and CaSO4·2H2O, act on key targets, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), TP53, and IL-1 β through cytokine-mediated signaling pathways, inflammatory responses, cell proliferation, and apoptosis. This could be useful for the treatment of RD.","PeriodicalId":23692,"journal":{"name":"World Journal of Traditional Chinese Medicine","volume":"9 1","pages":"150 - 159"},"PeriodicalIF":4.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using network pharmacology and molecular docking tools to investigate the potential mechanism of ephedra-gypsum in the treatment of respiratory diseases\",\"authors\":\"Can Huang, Ling Yuan, Yang Niu, Yating Yang, Yi-Fan Yang, Yi Nan, Hong-Li Dou, J. Japhet\",\"doi\":\"10.4103/2311-8571.378172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The objective of this study was to investigate the potential mechanisms of ephedra-gypsum in the treatment of respiratory diseases (RDs) using network pharmacology and molecular docking techniques. Materials and Methods: The TCMSP and UniProt databases were used to mine the active components and targets of ephedra-gypsum, and the targets of RD were screened using the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases. The protein-protein interaction network graph was created using the drug-disease intersection targets in the STRING database. The network diagram was analyzed using Cytoscape 3.9.1's topology function. The gene ontology (GO) and KEGG enrichment analyses were performed using the DAVID platform. Molecular docking bioactivity validation of the main active components and core targets was performed using AutoDock and PyMOL software. Results: Twenty-four compounds were screened, and 113 drug-disease targets overlapped. In total, 358 biological processes, 67 molecular functions, 38 cellular components of GO, and 139 pathways were identified. Molecular docking analysis demonstrated the strong binding ability of tumor protein 53 (TP53)-luteolin. Conclusion: The core components of ephedra-gypsum, such as quercetin, luteolin, kaempferol, and CaSO4·2H2O, act on key targets, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), TP53, and IL-1 β through cytokine-mediated signaling pathways, inflammatory responses, cell proliferation, and apoptosis. This could be useful for the treatment of RD.\",\"PeriodicalId\":23692,\"journal\":{\"name\":\"World Journal of Traditional Chinese Medicine\",\"volume\":\"9 1\",\"pages\":\"150 - 159\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Traditional Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/2311-8571.378172\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Traditional Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/2311-8571.378172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用网络药理学和分子对接技术,探讨麻黄石膏治疗呼吸系统疾病的潜在机制。材料和方法:利用TCMSP和UniProt数据库对麻黄石膏的活性成分和靶标进行了筛选,并利用人的在线孟德尔遗传(OMIM)和GeneCards数据库对RD的靶标进行了筛查。蛋白质-蛋白质相互作用网络图是使用STRING数据库中的药物-疾病交叉靶标创建的。使用Cytoscape 3.9.1的拓扑函数分析网络图。使用DAVID平台进行基因本体论(GO)和KEGG富集分析。使用AutoDock和PyMOL软件对主要活性成分和核心靶标进行分子对接生物活性验证。结果:筛选出24个化合物,113个药物-疾病靶点重叠。总共鉴定了358个生物学过程、67个分子功能、38个GO细胞成分和139个途径。分子对接分析表明肿瘤蛋白53(TP53)-木犀草素具有较强的结合能力。结论:麻黄石膏的核心成分槲皮素、木犀草素、山奈酚和CaSO4·2H2O通过细胞因子介导的信号通路、炎症反应、细胞增殖和凋亡作用于肿瘤坏死因子(TNF)、白细胞介素-6(IL-6)、TP53和IL-1β等关键靶点。这可能对RD的治疗有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using network pharmacology and molecular docking tools to investigate the potential mechanism of ephedra-gypsum in the treatment of respiratory diseases
Objective: The objective of this study was to investigate the potential mechanisms of ephedra-gypsum in the treatment of respiratory diseases (RDs) using network pharmacology and molecular docking techniques. Materials and Methods: The TCMSP and UniProt databases were used to mine the active components and targets of ephedra-gypsum, and the targets of RD were screened using the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases. The protein-protein interaction network graph was created using the drug-disease intersection targets in the STRING database. The network diagram was analyzed using Cytoscape 3.9.1's topology function. The gene ontology (GO) and KEGG enrichment analyses were performed using the DAVID platform. Molecular docking bioactivity validation of the main active components and core targets was performed using AutoDock and PyMOL software. Results: Twenty-four compounds were screened, and 113 drug-disease targets overlapped. In total, 358 biological processes, 67 molecular functions, 38 cellular components of GO, and 139 pathways were identified. Molecular docking analysis demonstrated the strong binding ability of tumor protein 53 (TP53)-luteolin. Conclusion: The core components of ephedra-gypsum, such as quercetin, luteolin, kaempferol, and CaSO4·2H2O, act on key targets, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), TP53, and IL-1 β through cytokine-mediated signaling pathways, inflammatory responses, cell proliferation, and apoptosis. This could be useful for the treatment of RD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Traditional Chinese Medicine
World Journal of Traditional Chinese Medicine Medicine-Complementary and Alternative Medicine
CiteScore
5.40
自引率
2.30%
发文量
259
审稿时长
24 weeks
期刊最新文献
Efficacy and safety of huachansu capsules for the treatment of esophageal cancer: A systematic review and meta-analysis Shenyi capsule prolongs postoperative survival of patients with nonsmall cell lung cancer: A multicenter, randomized, controlled trial Potential of essential oils as alternative permeation enhancers for transdermal delivery Research progress on Rodgersia and predictive analysis on its quality markers Symptom assessment and management in patients with lung cancer undergoing conventional or traditional chinese medicine care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1