{"title":"随机控制Schroedinger方程:数值解的收敛性和鲁棒稳定性","authors":"C. Romero-Meléndez, D. Castillo-Fernández","doi":"10.35470/2226-4116-2021-10-3-178-184","DOIUrl":null,"url":null,"abstract":"In this paper we study the stochastic stability of numerical solutions of a stochastic controlled Schr¨odinger equation. We investigate the boundedness in second moment, the convergence and the stability of the zero solution for this equation, using two new definitions of almost sure exponential robust stability and asymptotic stability, for the Euler-Maruyama numerical scheme. Considering that the diffusion term is controlled, by using the method of Lyapunov functions and the corresponding diffusion operator associated, we apply techniques of X. Mao and A. Tsoi for achieve our task. Finally,\nwe illustrate this method with a problem in Nuclear Magnetic Resonance (NMR).","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic controlled Schroedinger equation: convergence and robust stability for numerical solutions\",\"authors\":\"C. Romero-Meléndez, D. Castillo-Fernández\",\"doi\":\"10.35470/2226-4116-2021-10-3-178-184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the stochastic stability of numerical solutions of a stochastic controlled Schr¨odinger equation. We investigate the boundedness in second moment, the convergence and the stability of the zero solution for this equation, using two new definitions of almost sure exponential robust stability and asymptotic stability, for the Euler-Maruyama numerical scheme. Considering that the diffusion term is controlled, by using the method of Lyapunov functions and the corresponding diffusion operator associated, we apply techniques of X. Mao and A. Tsoi for achieve our task. Finally,\\nwe illustrate this method with a problem in Nuclear Magnetic Resonance (NMR).\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2021-10-3-178-184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-3-178-184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
A stochastic controlled Schroedinger equation: convergence and robust stability for numerical solutions
In this paper we study the stochastic stability of numerical solutions of a stochastic controlled Schr¨odinger equation. We investigate the boundedness in second moment, the convergence and the stability of the zero solution for this equation, using two new definitions of almost sure exponential robust stability and asymptotic stability, for the Euler-Maruyama numerical scheme. Considering that the diffusion term is controlled, by using the method of Lyapunov functions and the corresponding diffusion operator associated, we apply techniques of X. Mao and A. Tsoi for achieve our task. Finally,
we illustrate this method with a problem in Nuclear Magnetic Resonance (NMR).
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.