纳米铝热剂综述;增强含能材料的途径

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Central European Journal of Energetic Materials Pub Date : 2021-03-30 DOI:10.22211/CEJEM/134953
M. Zaky, A. Elbeih, T. Elshenawy
{"title":"纳米铝热剂综述;增强含能材料的途径","authors":"M. Zaky, A. Elbeih, T. Elshenawy","doi":"10.22211/CEJEM/134953","DOIUrl":null,"url":null,"abstract":"Nano-thermites or metastable intermolecular composites (MICs) have been implemented into modern research on energetic materials as they offer much higher energy densities, higher rates of energy release, stability, and safety (lower sensitivity). This paper reviews several synthetic methods for MICs that have been well thought-out for energetic applications, advantages and disadvantages, as well as the characteristics of each manufacturing technique. The techniques presented include powder mixing, sol-gel, synthesis of MICs based on nano-porous silicon (Psi), sputtering, multilayer nano-foils and electrolytically plated carbon nano-materials for nano-thermite applications. These techniques offer enormously different characteristics and, through the variation of various chemical techniques and conditions, a wide range of chemical and energetic properties may be attained. This may give the opportunity for the safe use of MICs as replacements for some conventional energetic materials in various applications, and may also enable us to study the effects when incorporating these MICs into energetic matrixes, as a promising and feasible research field.","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Review of Nano-thermites; a Pathway to Enhanced Energetic Materials\",\"authors\":\"M. Zaky, A. Elbeih, T. Elshenawy\",\"doi\":\"10.22211/CEJEM/134953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano-thermites or metastable intermolecular composites (MICs) have been implemented into modern research on energetic materials as they offer much higher energy densities, higher rates of energy release, stability, and safety (lower sensitivity). This paper reviews several synthetic methods for MICs that have been well thought-out for energetic applications, advantages and disadvantages, as well as the characteristics of each manufacturing technique. The techniques presented include powder mixing, sol-gel, synthesis of MICs based on nano-porous silicon (Psi), sputtering, multilayer nano-foils and electrolytically plated carbon nano-materials for nano-thermite applications. These techniques offer enormously different characteristics and, through the variation of various chemical techniques and conditions, a wide range of chemical and energetic properties may be attained. This may give the opportunity for the safe use of MICs as replacements for some conventional energetic materials in various applications, and may also enable us to study the effects when incorporating these MICs into energetic matrixes, as a promising and feasible research field.\",\"PeriodicalId\":9679,\"journal\":{\"name\":\"Central European Journal of Energetic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Energetic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22211/CEJEM/134953\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/CEJEM/134953","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

纳米铝热剂或亚稳态分子间复合材料(MIC)已被应用于含能材料的现代研究,因为它们提供了更高的能量密度、更高的能源释放率、稳定性和安全性(较低的灵敏度)。本文综述了在高能应用中经过深思熟虑的MIC的几种合成方法、优缺点以及每种制造技术的特点。介绍的技术包括粉末混合、溶胶-凝胶、基于纳米多孔硅(Psi)的MIC合成、溅射、多层纳米箔和用于纳米铝热剂应用的电解镀碳纳米材料。这些技术提供了极其不同的特性,并且通过各种化学技术和条件的变化,可以获得广泛的化学和能量特性。这可能为MIC在各种应用中作为一些传统含能材料的替代品的安全使用提供了机会,也可能使我们能够研究将这些MIC结合到含能基质中时的影响,这是一个有前景和可行的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Nano-thermites; a Pathway to Enhanced Energetic Materials
Nano-thermites or metastable intermolecular composites (MICs) have been implemented into modern research on energetic materials as they offer much higher energy densities, higher rates of energy release, stability, and safety (lower sensitivity). This paper reviews several synthetic methods for MICs that have been well thought-out for energetic applications, advantages and disadvantages, as well as the characteristics of each manufacturing technique. The techniques presented include powder mixing, sol-gel, synthesis of MICs based on nano-porous silicon (Psi), sputtering, multilayer nano-foils and electrolytically plated carbon nano-materials for nano-thermite applications. These techniques offer enormously different characteristics and, through the variation of various chemical techniques and conditions, a wide range of chemical and energetic properties may be attained. This may give the opportunity for the safe use of MICs as replacements for some conventional energetic materials in various applications, and may also enable us to study the effects when incorporating these MICs into energetic matrixes, as a promising and feasible research field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Energetic Materials
Central European Journal of Energetic Materials CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.80
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials. Topics: ignition, combustion and detonation phenomenon; formulation, synthesis and processing; analysis and thermal decomposition; toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization; molecular orbital calculations; detonation properties and ballistics; biotechnology and hazards testing CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.
期刊最新文献
Prediction of Ignition Delay Times for Amine-based Liquid Propellants through a QSPR Approach Modification of Axial Distribution of Fragment Velocity in Preformed Fragmentation Warheads Initiation Strategy of Aimable Warhead Based on Asynchronous Initiation between Lines Influence of the Prepolymer Structure of Glycidyl Azide Polymer (GAP) on Binder Properties - Some Theoretical Considerations Synthesis of a New Random Copolymer Based on Glycidyl Nitrate and Tetrahydrofuran: A Thermal, Kinetic, and Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1