Henning Heiberg-Andersen, Heidi Ytterstad Hindberg, Jorn Havas Maeland, H. Johnsen, Torleif Lothe, L. Vasilyev
{"title":"模拟海上风电场尾迹与SAR图像的比较","authors":"Henning Heiberg-Andersen, Heidi Ytterstad Hindberg, Jorn Havas Maeland, H. Johnsen, Torleif Lothe, L. Vasilyev","doi":"10.17736/ijope.2022.aj11","DOIUrl":null,"url":null,"abstract":"Offshore wind farms are usually located remote from meteorological stations. Except from the sonic anemometers mounted at the nacelles of the wind turbines according to industrial standards, the access to wind measurements in the farm and its immediate surroundings is therefore limited. With the deployment of clusters of wind farms in the European Seas, the modification of the local wind and the generation of a turbulent wake by one farm can influence the power production of the neighbouring farm. Spaceborne Synthetic Aperture Radar (SAR) is an ideal instrument to observe such effects due to its high spatial resolution and large coverage. SAR can image a cluster of wind farms at the same time. The wind farm turbulent wake is manifested in the SAR intensity images as dark elongated areas downwind of a wind farm while the surrounding ocean areas appear brighter. Good agreement between images from SAR and Doppler radar measurements has recently been reported for the wake of the Westermost Rough wind farm in cases without stable atmospheric stratification. Inspired by this first of its kind comparison of ground-based Doppler radar and SAR images of wind farm wakes, we compare in this work SAR images and simulations of the two interacting wakes of the Sheringham Shoal and Dudgeon wind farms at the British East coast. The wakes are simulated by the Weather Research and Forecasting (WRF) code, a state-of-the-art regional meteorological code which has a simple built-in wind farm model. The normalized radar cross-section (NRCS) is estimated from the Sentinel-1 IW GRD products by averaging the intensity pixels to the output resolution of the model (i.e. 500 m).","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Simulated Offshore Wind Farm Wakes and SAR Images\",\"authors\":\"Henning Heiberg-Andersen, Heidi Ytterstad Hindberg, Jorn Havas Maeland, H. Johnsen, Torleif Lothe, L. Vasilyev\",\"doi\":\"10.17736/ijope.2022.aj11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore wind farms are usually located remote from meteorological stations. Except from the sonic anemometers mounted at the nacelles of the wind turbines according to industrial standards, the access to wind measurements in the farm and its immediate surroundings is therefore limited. With the deployment of clusters of wind farms in the European Seas, the modification of the local wind and the generation of a turbulent wake by one farm can influence the power production of the neighbouring farm. Spaceborne Synthetic Aperture Radar (SAR) is an ideal instrument to observe such effects due to its high spatial resolution and large coverage. SAR can image a cluster of wind farms at the same time. The wind farm turbulent wake is manifested in the SAR intensity images as dark elongated areas downwind of a wind farm while the surrounding ocean areas appear brighter. Good agreement between images from SAR and Doppler radar measurements has recently been reported for the wake of the Westermost Rough wind farm in cases without stable atmospheric stratification. Inspired by this first of its kind comparison of ground-based Doppler radar and SAR images of wind farm wakes, we compare in this work SAR images and simulations of the two interacting wakes of the Sheringham Shoal and Dudgeon wind farms at the British East coast. The wakes are simulated by the Weather Research and Forecasting (WRF) code, a state-of-the-art regional meteorological code which has a simple built-in wind farm model. The normalized radar cross-section (NRCS) is estimated from the Sentinel-1 IW GRD products by averaging the intensity pixels to the output resolution of the model (i.e. 500 m).\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2022.aj11\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.aj11","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Comparison of Simulated Offshore Wind Farm Wakes and SAR Images
Offshore wind farms are usually located remote from meteorological stations. Except from the sonic anemometers mounted at the nacelles of the wind turbines according to industrial standards, the access to wind measurements in the farm and its immediate surroundings is therefore limited. With the deployment of clusters of wind farms in the European Seas, the modification of the local wind and the generation of a turbulent wake by one farm can influence the power production of the neighbouring farm. Spaceborne Synthetic Aperture Radar (SAR) is an ideal instrument to observe such effects due to its high spatial resolution and large coverage. SAR can image a cluster of wind farms at the same time. The wind farm turbulent wake is manifested in the SAR intensity images as dark elongated areas downwind of a wind farm while the surrounding ocean areas appear brighter. Good agreement between images from SAR and Doppler radar measurements has recently been reported for the wake of the Westermost Rough wind farm in cases without stable atmospheric stratification. Inspired by this first of its kind comparison of ground-based Doppler radar and SAR images of wind farm wakes, we compare in this work SAR images and simulations of the two interacting wakes of the Sheringham Shoal and Dudgeon wind farms at the British East coast. The wakes are simulated by the Weather Research and Forecasting (WRF) code, a state-of-the-art regional meteorological code which has a simple built-in wind farm model. The normalized radar cross-section (NRCS) is estimated from the Sentinel-1 IW GRD products by averaging the intensity pixels to the output resolution of the model (i.e. 500 m).
期刊介绍:
The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world.
Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.