{"title":"基于自适应大邻域搜索的移动机器人经济协同调度优化","authors":"Bin Zhou, Jia Xu","doi":"10.1504/EJIE.2018.10017808","DOIUrl":null,"url":null,"abstract":"The growing energy consumption and environmental pressures call for economic and friendly green manufacturing. The paper creatively studies an economic part feeding scheduling problem with a cooperative mechanism to coordinate multiple mobile robots in the fullest sense. When solving the economic co-scheduling problem in mixed-model assembly lines, this paper jointly considers the objective of energy saving as well as the robot employment cost, which incorporates traditional performance criterion with growing energy concerns. In order to improve the performance and diversity of solutions, a multi-phase adaptive search (MPAS) algorithm is proposed which is integrated with clustering heuristics, specific destroy and repair rules, adaptive selection and perturbation strategy. Computational experiments are conducted in order to test and verify the effectiveness and efficiency of the proposed MPAS algorithm. Comparison tests are carried out between the proposed MPAS and two widely-applied benchmark algorithms. The results obtained in this study might be inspiring for future studies on energy-efficient cooperative scheduling topics. [Received 16 February 2018; Revised 22 May 2018; Accepted 22 June 2018]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An adaptive large neighbourhood search-based optimisation for economic co-scheduling of mobile robots\",\"authors\":\"Bin Zhou, Jia Xu\",\"doi\":\"10.1504/EJIE.2018.10017808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing energy consumption and environmental pressures call for economic and friendly green manufacturing. The paper creatively studies an economic part feeding scheduling problem with a cooperative mechanism to coordinate multiple mobile robots in the fullest sense. When solving the economic co-scheduling problem in mixed-model assembly lines, this paper jointly considers the objective of energy saving as well as the robot employment cost, which incorporates traditional performance criterion with growing energy concerns. In order to improve the performance and diversity of solutions, a multi-phase adaptive search (MPAS) algorithm is proposed which is integrated with clustering heuristics, specific destroy and repair rules, adaptive selection and perturbation strategy. Computational experiments are conducted in order to test and verify the effectiveness and efficiency of the proposed MPAS algorithm. Comparison tests are carried out between the proposed MPAS and two widely-applied benchmark algorithms. The results obtained in this study might be inspiring for future studies on energy-efficient cooperative scheduling topics. [Received 16 February 2018; Revised 22 May 2018; Accepted 22 June 2018]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2018.10017808\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2018.10017808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An adaptive large neighbourhood search-based optimisation for economic co-scheduling of mobile robots
The growing energy consumption and environmental pressures call for economic and friendly green manufacturing. The paper creatively studies an economic part feeding scheduling problem with a cooperative mechanism to coordinate multiple mobile robots in the fullest sense. When solving the economic co-scheduling problem in mixed-model assembly lines, this paper jointly considers the objective of energy saving as well as the robot employment cost, which incorporates traditional performance criterion with growing energy concerns. In order to improve the performance and diversity of solutions, a multi-phase adaptive search (MPAS) algorithm is proposed which is integrated with clustering heuristics, specific destroy and repair rules, adaptive selection and perturbation strategy. Computational experiments are conducted in order to test and verify the effectiveness and efficiency of the proposed MPAS algorithm. Comparison tests are carried out between the proposed MPAS and two widely-applied benchmark algorithms. The results obtained in this study might be inspiring for future studies on energy-efficient cooperative scheduling topics. [Received 16 February 2018; Revised 22 May 2018; Accepted 22 June 2018]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.