自由岩心章动参数的估计和计算选项的可用性

IF 2.8 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geodesy and Geodynamics Pub Date : 2023-08-20 DOI:10.1016/j.geog.2023.05.004
Weiwei Yang , Xiaoming Cui , Jianqiao Xu , Qingchao Liu , Ming Qin
{"title":"自由岩心章动参数的估计和计算选项的可用性","authors":"Weiwei Yang ,&nbsp;Xiaoming Cui ,&nbsp;Jianqiao Xu ,&nbsp;Qingchao Liu ,&nbsp;Ming Qin","doi":"10.1016/j.geog.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>The Earth's Free Core Nutation (FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects. High-precision superconducting gravimeter (SG) and very long baseline interferometry (VLBI) provide good observation techniques for detecting the FCN parameters. However, some choices in data processing and solution procedures increase the uncertainty of the FCN parameters. In this study, we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data, SG data from thirty-one stations, and the 10 celestial pole offset (CPO) series. The results show that significant discrepancies are caused by different computing options for a single SG station. The stacking method, which results in a variation of 0.24–5 sidereal days (SDs) in the FCN period (<em>T</em>) and 10<sup>3</sup>-10<sup>4</sup> in the quality factor (<em>Q</em>) due to the selection of the weighting function and the ocean tide model (OTM), can effectively suppress this influence. The statistical analysis results of synthetic data shows that although different weight choices, while adjusting the proportion of diurnal tidal waves involved, do not significantly improve the accuracy of fitted FCN parameters from gravity observations. The study evaluated a series of OTMs using the loading correction efficiency. The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results. Through the estimation of the FCN parameters based on the forced nutation, it was found that the weight function <em>P</em><sub>1</sub> is more suitable than others, and different CPO series (after 2009) resulted in a difference of 0.4 SDs in the <em>T</em> and of 10<sup>3</sup> in the <em>Q</em>. We estimated the FCN parameters for SG (<em>T</em> = 430.4 ± 1.5 SDs and <em>Q</em> = 1.52 × 10<sup>4</sup> ± 2.5 × 10<sup>3</sup>) and for VLBI (<em>T</em> = 429.8 ± 0.7 SDs, <em>Q</em> = 1.88 × 10<sup>4</sup> ± 2.1 × 10<sup>3</sup>).</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"15 1","pages":"Pages 61-74"},"PeriodicalIF":2.8000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674984723000551/pdfft?md5=e046de1660e3e935f6bb995d28e79c32&pid=1-s2.0-S1674984723000551-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Estimation of free core nutation parameters and availability of computing options\",\"authors\":\"Weiwei Yang ,&nbsp;Xiaoming Cui ,&nbsp;Jianqiao Xu ,&nbsp;Qingchao Liu ,&nbsp;Ming Qin\",\"doi\":\"10.1016/j.geog.2023.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Earth's Free Core Nutation (FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects. High-precision superconducting gravimeter (SG) and very long baseline interferometry (VLBI) provide good observation techniques for detecting the FCN parameters. However, some choices in data processing and solution procedures increase the uncertainty of the FCN parameters. In this study, we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data, SG data from thirty-one stations, and the 10 celestial pole offset (CPO) series. The results show that significant discrepancies are caused by different computing options for a single SG station. The stacking method, which results in a variation of 0.24–5 sidereal days (SDs) in the FCN period (<em>T</em>) and 10<sup>3</sup>-10<sup>4</sup> in the quality factor (<em>Q</em>) due to the selection of the weighting function and the ocean tide model (OTM), can effectively suppress this influence. The statistical analysis results of synthetic data shows that although different weight choices, while adjusting the proportion of diurnal tidal waves involved, do not significantly improve the accuracy of fitted FCN parameters from gravity observations. The study evaluated a series of OTMs using the loading correction efficiency. The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results. Through the estimation of the FCN parameters based on the forced nutation, it was found that the weight function <em>P</em><sub>1</sub> is more suitable than others, and different CPO series (after 2009) resulted in a difference of 0.4 SDs in the <em>T</em> and of 10<sup>3</sup> in the <em>Q</em>. We estimated the FCN parameters for SG (<em>T</em> = 430.4 ± 1.5 SDs and <em>Q</em> = 1.52 × 10<sup>4</sup> ± 2.5 × 10<sup>3</sup>) and for VLBI (<em>T</em> = 429.8 ± 0.7 SDs, <em>Q</em> = 1.88 × 10<sup>4</sup> ± 2.1 × 10<sup>3</sup>).</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"15 1\",\"pages\":\"Pages 61-74\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000551/pdfft?md5=e046de1660e3e935f6bb995d28e79c32&pid=1-s2.0-S1674984723000551-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000551\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000551","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

地球的自由地心换向(FCN)会引起地球潮汐和强迫换向,其频率接近 FCN,表现出共振效应。高精度超导重力仪(SG)和甚长基线干涉测量法(VLBI)为探测自由地心说参数提供了良好的观测技术。然而,数据处理和求解过程中的一些选择增加了 FCN 参数的不确定性。在这项研究中,我们利用合成数据、31 个台站的 SG 数据和 10 个天极偏移(CPO)序列,分析了加权函数和海洋潮汐修正在 FCN 参数探测中的差异和效果。结果表明,单个 SG 站的不同计算方案会造成显著差异。堆叠法由于加权函数和海洋潮汐模型(OTM)的选择,导致 FCN 周期(T)和质量因子(Q)分别有 0.24-5 个恒星日(SDs)和 103-104 个恒星日(SDs)的差异,可以有效抑制这种影响。合成数据的统计分析结果表明,虽然不同的权重选择在调整昼夜潮汐波参与比例的同时,并不能显著提高重力观测拟合 FCN 参数的精度。研究利用加载校正效率对一系列 OTM 进行了评估。根据评估结果选择合适的 OTMs 平均值,可以提高 FCN 参数的拟合精度。我们估算了 SG(T = 430.4 ± 1.5 SDs,Q = 1.52 × 104 ± 2.5 × 103)和 VLBI(T = 429.8 ± 0.7 SDs,Q = 1.88 × 104 ± 2.1 × 103)的 FCN 参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of free core nutation parameters and availability of computing options

The Earth's Free Core Nutation (FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects. High-precision superconducting gravimeter (SG) and very long baseline interferometry (VLBI) provide good observation techniques for detecting the FCN parameters. However, some choices in data processing and solution procedures increase the uncertainty of the FCN parameters. In this study, we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data, SG data from thirty-one stations, and the 10 celestial pole offset (CPO) series. The results show that significant discrepancies are caused by different computing options for a single SG station. The stacking method, which results in a variation of 0.24–5 sidereal days (SDs) in the FCN period (T) and 103-104 in the quality factor (Q) due to the selection of the weighting function and the ocean tide model (OTM), can effectively suppress this influence. The statistical analysis results of synthetic data shows that although different weight choices, while adjusting the proportion of diurnal tidal waves involved, do not significantly improve the accuracy of fitted FCN parameters from gravity observations. The study evaluated a series of OTMs using the loading correction efficiency. The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results. Through the estimation of the FCN parameters based on the forced nutation, it was found that the weight function P1 is more suitable than others, and different CPO series (after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q. We estimated the FCN parameters for SG (T = 430.4 ± 1.5 SDs and Q = 1.52 × 104 ± 2.5 × 103) and for VLBI (T = 429.8 ± 0.7 SDs, Q = 1.88 × 104 ± 2.1 × 103).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodesy and Geodynamics
Geodesy and Geodynamics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
4.40
自引率
4.20%
发文量
566
审稿时长
69 days
期刊介绍: Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.
期刊最新文献
Editorial Board Present-day movement characteristics of the Qinghai Nanshan fault and its surrounding area from GPS observation Probing signals of atmospheric gravity waves excited by the July 29, 2021 MW8.2 Alaska earthquake Inversion method of deflection of the vertical based on SWOT wide-swath altimeter data Assessment of the performance of the TOPGNSS and ANN-MB antennas for ionospheric measurements using low-cost u-blox GNSS receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1