Kenya Ono, H. Naruse, Qi-Feng Yao, Zhirong Cai, S. Fukuda, M. Yokokawa
{"title":"水跃引起的多次冲刷和向上变细:对深水地层记录中循环台阶识别的启示","authors":"Kenya Ono, H. Naruse, Qi-Feng Yao, Zhirong Cai, S. Fukuda, M. Yokokawa","doi":"10.2110/jsr.2021.142","DOIUrl":null,"url":null,"abstract":"\n Hydraulic jumps control the bypass, erosion, and depositional processes of Froude-supercritical turbidity currents, so they represent a significant process for understanding the development of submarine geomorphology. Hydraulic jumps actively occur from submarine canyons to fans, where the seafloor slope is relatively steep. Turbidites in such areas comprise large-scale bedforms called cyclic steps, and they exhibit complex internal structures, including localized erosion and the accumulation of coarse-grained fining-upward sequences. However, it is unclear which turbidity-current properties are reflected in the heterogeneous depositional characteristics and grain-size sorting of these deposits. To this end, we conducted flume experiments to reproduce deposits associated with the hydraulic jumps of surge-type flows. Turbidity-current surges were repeatedly generated in an experimental flume with a knickpoint that transitioned from a steep to a gentle slope, resulting in cyclic steps. Overall, the upstream migration of the cyclic steps produced a downstream-upward-fining succession of turbidites. However, hydraulic jumps occurred at several places over the trough to the stoss side of the step in a single flow due to the non-uniform and unsteady flow state of the surge-type turbidite succession. As a result, the reproduced succession exhibited multiple local scours and coarse-grained fill in the lower parts of the turbidites. This suggests that multiple local scours and fining-upward trends are discriminant characteristics of cyclic-step deposits formed by surge-type supercritical turbidity currents.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple scours and upward fining caused by hydraulic jumps: implications for the recognition of cyclic steps in the deepwater stratigraphic record\",\"authors\":\"Kenya Ono, H. Naruse, Qi-Feng Yao, Zhirong Cai, S. Fukuda, M. Yokokawa\",\"doi\":\"10.2110/jsr.2021.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydraulic jumps control the bypass, erosion, and depositional processes of Froude-supercritical turbidity currents, so they represent a significant process for understanding the development of submarine geomorphology. Hydraulic jumps actively occur from submarine canyons to fans, where the seafloor slope is relatively steep. Turbidites in such areas comprise large-scale bedforms called cyclic steps, and they exhibit complex internal structures, including localized erosion and the accumulation of coarse-grained fining-upward sequences. However, it is unclear which turbidity-current properties are reflected in the heterogeneous depositional characteristics and grain-size sorting of these deposits. To this end, we conducted flume experiments to reproduce deposits associated with the hydraulic jumps of surge-type flows. Turbidity-current surges were repeatedly generated in an experimental flume with a knickpoint that transitioned from a steep to a gentle slope, resulting in cyclic steps. Overall, the upstream migration of the cyclic steps produced a downstream-upward-fining succession of turbidites. However, hydraulic jumps occurred at several places over the trough to the stoss side of the step in a single flow due to the non-uniform and unsteady flow state of the surge-type turbidite succession. As a result, the reproduced succession exhibited multiple local scours and coarse-grained fill in the lower parts of the turbidites. This suggests that multiple local scours and fining-upward trends are discriminant characteristics of cyclic-step deposits formed by surge-type supercritical turbidity currents.\",\"PeriodicalId\":17044,\"journal\":{\"name\":\"Journal of Sedimentary Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sedimentary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/jsr.2021.142\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2021.142","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Multiple scours and upward fining caused by hydraulic jumps: implications for the recognition of cyclic steps in the deepwater stratigraphic record
Hydraulic jumps control the bypass, erosion, and depositional processes of Froude-supercritical turbidity currents, so they represent a significant process for understanding the development of submarine geomorphology. Hydraulic jumps actively occur from submarine canyons to fans, where the seafloor slope is relatively steep. Turbidites in such areas comprise large-scale bedforms called cyclic steps, and they exhibit complex internal structures, including localized erosion and the accumulation of coarse-grained fining-upward sequences. However, it is unclear which turbidity-current properties are reflected in the heterogeneous depositional characteristics and grain-size sorting of these deposits. To this end, we conducted flume experiments to reproduce deposits associated with the hydraulic jumps of surge-type flows. Turbidity-current surges were repeatedly generated in an experimental flume with a knickpoint that transitioned from a steep to a gentle slope, resulting in cyclic steps. Overall, the upstream migration of the cyclic steps produced a downstream-upward-fining succession of turbidites. However, hydraulic jumps occurred at several places over the trough to the stoss side of the step in a single flow due to the non-uniform and unsteady flow state of the surge-type turbidite succession. As a result, the reproduced succession exhibited multiple local scours and coarse-grained fill in the lower parts of the turbidites. This suggests that multiple local scours and fining-upward trends are discriminant characteristics of cyclic-step deposits formed by surge-type supercritical turbidity currents.
期刊介绍:
The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.