能源转型——为更绿色的未来铺平道路

IF 0.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanomaterials and Energy Pub Date : 2023-07-01 DOI:10.1680/jnaen.23.00057
A. R., Treshella Laishram, Sasmita Bal
{"title":"能源转型——为更绿色的未来铺平道路","authors":"A. R., Treshella Laishram, Sasmita Bal","doi":"10.1680/jnaen.23.00057","DOIUrl":null,"url":null,"abstract":"The concept of \"Energy Transition\" embodies a strategic shift from conventional fossil fuels to cleaner and more sustainable energy sources. It represents a visionary pathway towards a future where humanity can thrive without compromising the delicate balance of our planet’s ecosystems. This transformative journey acknowledges the imperative of reducing carbon emissions, mitigating climate change, and fostering energy security. The roadmap to a sustainable future through energy transition is a multifaceted endeavor that spans technological innovation, policy reform, and societal engagement. As societies worldwide confront the challenges posed by climate change, the need to transition from fossil fuels to renewable and low-carbon energy sources has become paramount. This transition involves a meticulous orchestration of efforts aimed at curbing greenhouse gas emissions, enhancing energy efficiency, and ensuring the equitable distribution of energy access.This study looks into the technological and financial implications of an accelerated energy transition by 2050, with the help of new data on renewable energy. It is suggested that this shift will be largely driven by energy efficiency and renewable energy technologies, which have a significant relationship. Favorable profitable conditions, quickly accessible resources, scalable technology, and significant socioeconomic benefits provide support to the energy transition.","PeriodicalId":44365,"journal":{"name":"Nanomaterials and Energy","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy transition- paving the way for a greener future\",\"authors\":\"A. R., Treshella Laishram, Sasmita Bal\",\"doi\":\"10.1680/jnaen.23.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of \\\"Energy Transition\\\" embodies a strategic shift from conventional fossil fuels to cleaner and more sustainable energy sources. It represents a visionary pathway towards a future where humanity can thrive without compromising the delicate balance of our planet’s ecosystems. This transformative journey acknowledges the imperative of reducing carbon emissions, mitigating climate change, and fostering energy security. The roadmap to a sustainable future through energy transition is a multifaceted endeavor that spans technological innovation, policy reform, and societal engagement. As societies worldwide confront the challenges posed by climate change, the need to transition from fossil fuels to renewable and low-carbon energy sources has become paramount. This transition involves a meticulous orchestration of efforts aimed at curbing greenhouse gas emissions, enhancing energy efficiency, and ensuring the equitable distribution of energy access.This study looks into the technological and financial implications of an accelerated energy transition by 2050, with the help of new data on renewable energy. It is suggested that this shift will be largely driven by energy efficiency and renewable energy technologies, which have a significant relationship. Favorable profitable conditions, quickly accessible resources, scalable technology, and significant socioeconomic benefits provide support to the energy transition.\",\"PeriodicalId\":44365,\"journal\":{\"name\":\"Nanomaterials and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jnaen.23.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jnaen.23.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

“能源转型”的概念体现了从传统化石燃料向更清洁、更可持续的能源的战略转变。它代表了一条有远见的未来之路,在未来,人类可以在不损害地球生态系统微妙平衡的情况下蓬勃发展。这一变革之旅承认减少碳排放、减缓气候变化和促进能源安全的必要性。通过能源转型实现可持续未来的路线图是一项多方面的努力,涵盖技术创新、政策改革和社会参与。随着全球社会面临气候变化带来的挑战,从化石燃料向可再生能源和低碳能源过渡的需求变得至关重要。这一转变需要精心安排各项努力,以遏制温室气体排放、提高能源效率和确保能源公平分配。在可再生能源新数据的帮助下,本研究着眼于到2050年加速能源转型的技术和财政影响。这一转变将在很大程度上受到能源效率和可再生能源技术的推动,两者之间存在着重要的关系。有利的盈利条件、可快速获取的资源、可扩展的技术和显著的社会经济效益为能源转型提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy transition- paving the way for a greener future
The concept of "Energy Transition" embodies a strategic shift from conventional fossil fuels to cleaner and more sustainable energy sources. It represents a visionary pathway towards a future where humanity can thrive without compromising the delicate balance of our planet’s ecosystems. This transformative journey acknowledges the imperative of reducing carbon emissions, mitigating climate change, and fostering energy security. The roadmap to a sustainable future through energy transition is a multifaceted endeavor that spans technological innovation, policy reform, and societal engagement. As societies worldwide confront the challenges posed by climate change, the need to transition from fossil fuels to renewable and low-carbon energy sources has become paramount. This transition involves a meticulous orchestration of efforts aimed at curbing greenhouse gas emissions, enhancing energy efficiency, and ensuring the equitable distribution of energy access.This study looks into the technological and financial implications of an accelerated energy transition by 2050, with the help of new data on renewable energy. It is suggested that this shift will be largely driven by energy efficiency and renewable energy technologies, which have a significant relationship. Favorable profitable conditions, quickly accessible resources, scalable technology, and significant socioeconomic benefits provide support to the energy transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Energy
Nanomaterials and Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
0.00%
发文量
2
期刊最新文献
Effect of nanowollastonite wastes on the bitumen properties and the performance of hot asphalt mixtures Synthesis of BiDy composite oxide nanoflakes with good electrochemical properties Analysis on feasibility of solar-powered air conditioning systems using natural refrigerants Biological performance of femtosecond laser textured Fe-Mn alloys for vascular applications Effect of nanomaterials on the melting and freezing characteristics of phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1