О.В. Шматко, Анна Олександрівна Голоскокова, С.В. Мілевський, Н.І. Воропай
{"title":"图像识别信息系统","authors":"О.В. Шматко, Анна Олександрівна Голоскокова, С.В. Мілевський, Н.І. Воропай","doi":"10.30748/soivt.2021.68.17","DOIUrl":null,"url":null,"abstract":"Класифікація даних за наявності шуму може призвести до набагато гірших результатів, ніж очікувалося, для чистих шаблонів. У даній роботі була досліджена проблема розпізнавання та ідентифікації особи у відеопослідовності. Основні внески, представлені в цій роботі – це експериментальне дослідження впливу різних типів шуму та підвищення безпеки шляхом розробки комп’ютерної системи для розпізнавання та ідентифікації користувачів у відеоряді. На основі вивчення методів та алгоритмів пошуку облич на зображеннях було обрано метод Віоли-Джонса, вейвлет-перетворення та метод головних компонент. Ці методи є одними з найкращих за співвідношенням ефективності розпізнавання та швидкості роботи. Однак навчання класифікаторів відбувається дуже повільно, але результати пошуку обличчя дуже швидкі.","PeriodicalId":32658,"journal":{"name":"Sistemi ozbroiennia i viis''kova tekhnika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Інформаційна система розпізнавання зображень\",\"authors\":\"О.В. Шматко, Анна Олександрівна Голоскокова, С.В. Мілевський, Н.І. Воропай\",\"doi\":\"10.30748/soivt.2021.68.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Класифікація даних за наявності шуму може призвести до набагато гірших результатів, ніж очікувалося, для чистих шаблонів. У даній роботі була досліджена проблема розпізнавання та ідентифікації особи у відеопослідовності. Основні внески, представлені в цій роботі – це експериментальне дослідження впливу різних типів шуму та підвищення безпеки шляхом розробки комп’ютерної системи для розпізнавання та ідентифікації користувачів у відеоряді. На основі вивчення методів та алгоритмів пошуку облич на зображеннях було обрано метод Віоли-Джонса, вейвлет-перетворення та метод головних компонент. Ці методи є одними з найкращих за співвідношенням ефективності розпізнавання та швидкості роботи. Однак навчання класифікаторів відбувається дуже повільно, але результати пошуку обличчя дуже швидкі.\",\"PeriodicalId\":32658,\"journal\":{\"name\":\"Sistemi ozbroiennia i viis''kova tekhnika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sistemi ozbroiennia i viis''kova tekhnika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30748/soivt.2021.68.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemi ozbroiennia i viis''kova tekhnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30748/soivt.2021.68.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Класифікація даних за наявності шуму може призвести до набагато гірших результатів, ніж очікувалося, для чистих шаблонів. У даній роботі була досліджена проблема розпізнавання та ідентифікації особи у відеопослідовності. Основні внески, представлені в цій роботі – це експериментальне дослідження впливу різних типів шуму та підвищення безпеки шляхом розробки комп’ютерної системи для розпізнавання та ідентифікації користувачів у відеоряді. На основі вивчення методів та алгоритмів пошуку облич на зображеннях було обрано метод Віоли-Джонса, вейвлет-перетворення та метод головних компонент. Ці методи є одними з найкращих за співвідношенням ефективності розпізнавання та швидкості роботи. Однак навчання класифікаторів відбувається дуже повільно, але результати пошуку обличчя дуже швидкі.