Nur Aira Abd Rahman, K. Sahari, N. A. Hamid, Yew Cheong Hou
{"title":"移动机器人自主辐射地图覆盖路径规划方法","authors":"Nur Aira Abd Rahman, K. Sahari, N. A. Hamid, Yew Cheong Hou","doi":"10.1177/17298806221116483","DOIUrl":null,"url":null,"abstract":"In nuclear and radiation-related industries, it is crucial to ensure that the radiation dose exposure to the radiation worker is maintained below the permissible dose limit. A radiation map is a useful tool for visualizing the radiation distribution across the work area and for coordinating activities involving the hotspots (high radiation areas). The goal of this work was to design and implement a coverage path planning approach for autonomous radiation mapping carried out by a mobile robot. Given a 2D occupancy map, a method to generate uniformly distributed sampling points was proposed. The geometry of the region of interest, the radiation detector module, and the radiation measurement parameters were considered in formulating the sampling positions. Next, the coverage path planning planner integrates the nearest neighbor and depth-first search algorithms to create a continuous path that enables the robot to visit all the sampling points. The K-means clustering algorithm is added for systematic coverage of a large number of sampling points. The clustering provides options to partition the region of interest into smaller spaces, where the robot would perform the mapping cluster by cluster. Finally, the method of building the radiation map from the acquired data was also presented. The approach was implemented in ROS using a commercial mobile robot equipped with a Geiger–Muller detector. The performance and reliability of the proposed approach were evaluated with a series of simulations and real-world experiments. The results showed that the robot is able to perform autonomous radiation mapping at various target areas. The accuracy of the generated radiation map and the hotspots classifications were also compared and evaluated with conventional manual measurements. Overall, the theoretical frameworks and experiments have provided convincing results in the automation of hazardous work and subsequently toward improving the occupational safety of radiation workers.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A coverage path planning approach for autonomous radiation mapping with a mobile robot\",\"authors\":\"Nur Aira Abd Rahman, K. Sahari, N. A. Hamid, Yew Cheong Hou\",\"doi\":\"10.1177/17298806221116483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nuclear and radiation-related industries, it is crucial to ensure that the radiation dose exposure to the radiation worker is maintained below the permissible dose limit. A radiation map is a useful tool for visualizing the radiation distribution across the work area and for coordinating activities involving the hotspots (high radiation areas). The goal of this work was to design and implement a coverage path planning approach for autonomous radiation mapping carried out by a mobile robot. Given a 2D occupancy map, a method to generate uniformly distributed sampling points was proposed. The geometry of the region of interest, the radiation detector module, and the radiation measurement parameters were considered in formulating the sampling positions. Next, the coverage path planning planner integrates the nearest neighbor and depth-first search algorithms to create a continuous path that enables the robot to visit all the sampling points. The K-means clustering algorithm is added for systematic coverage of a large number of sampling points. The clustering provides options to partition the region of interest into smaller spaces, where the robot would perform the mapping cluster by cluster. Finally, the method of building the radiation map from the acquired data was also presented. The approach was implemented in ROS using a commercial mobile robot equipped with a Geiger–Muller detector. The performance and reliability of the proposed approach were evaluated with a series of simulations and real-world experiments. The results showed that the robot is able to perform autonomous radiation mapping at various target areas. The accuracy of the generated radiation map and the hotspots classifications were also compared and evaluated with conventional manual measurements. Overall, the theoretical frameworks and experiments have provided convincing results in the automation of hazardous work and subsequently toward improving the occupational safety of radiation workers.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221116483\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221116483","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
A coverage path planning approach for autonomous radiation mapping with a mobile robot
In nuclear and radiation-related industries, it is crucial to ensure that the radiation dose exposure to the radiation worker is maintained below the permissible dose limit. A radiation map is a useful tool for visualizing the radiation distribution across the work area and for coordinating activities involving the hotspots (high radiation areas). The goal of this work was to design and implement a coverage path planning approach for autonomous radiation mapping carried out by a mobile robot. Given a 2D occupancy map, a method to generate uniformly distributed sampling points was proposed. The geometry of the region of interest, the radiation detector module, and the radiation measurement parameters were considered in formulating the sampling positions. Next, the coverage path planning planner integrates the nearest neighbor and depth-first search algorithms to create a continuous path that enables the robot to visit all the sampling points. The K-means clustering algorithm is added for systematic coverage of a large number of sampling points. The clustering provides options to partition the region of interest into smaller spaces, where the robot would perform the mapping cluster by cluster. Finally, the method of building the radiation map from the acquired data was also presented. The approach was implemented in ROS using a commercial mobile robot equipped with a Geiger–Muller detector. The performance and reliability of the proposed approach were evaluated with a series of simulations and real-world experiments. The results showed that the robot is able to perform autonomous radiation mapping at various target areas. The accuracy of the generated radiation map and the hotspots classifications were also compared and evaluated with conventional manual measurements. Overall, the theoretical frameworks and experiments have provided convincing results in the automation of hazardous work and subsequently toward improving the occupational safety of radiation workers.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.