基于力分布算法的新型逆动力学模型反馈线性化控制6-RSS Stewart Gough机械手轨迹跟踪

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-05-03 DOI:10.1080/13873954.2020.1754861
Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei
{"title":"基于力分布算法的新型逆动力学模型反馈线性化控制6-RSS Stewart Gough机械手轨迹跟踪","authors":"Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei","doi":"10.1080/13873954.2020.1754861","DOIUrl":null,"url":null,"abstract":"ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1754861","citationCount":"3","resultStr":"{\"title\":\"Trajectory-tracking of 6-RSS Stewart-Gough manipulator by feedback-linearization control using a novel inverse dynamic model based on the force distribution algorithm\",\"authors\":\"Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei\",\"doi\":\"10.1080/13873954.2020.1754861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13873954.2020.1754861\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2020.1754861\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1754861","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

6-RSS Stewart-Gough并联机械臂包含6个曲柄杆分支,将基座和运动平台相互连接,形成一个6自由度的机械臂。本文提出了一种基于力分布算法的机械臂解耦逆动力学模型。利用反馈线性化控制在关节空间中跟踪复杂轨迹(多段同时进行平移和旋转运动)的性能,并与拉格朗日逆动力学模型进行了比较。结果表明,与拉格朗日模型相比,该模型具有更好的反馈线性化控制性能,特别是在参考轨迹量化时,计算量更少。采用两种模型的控制系统对运动平台载荷不确定性(运动平台质量的150%)具有鲁棒性。性能评估和鲁棒性批准是在Simulink环境中使用专门为此目的构建的Simscape模型进行仿真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trajectory-tracking of 6-RSS Stewart-Gough manipulator by feedback-linearization control using a novel inverse dynamic model based on the force distribution algorithm
ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1