Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei
{"title":"基于力分布算法的新型逆动力学模型反馈线性化控制6-RSS Stewart Gough机械手轨迹跟踪","authors":"Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei","doi":"10.1080/13873954.2020.1754861","DOIUrl":null,"url":null,"abstract":"ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1754861","citationCount":"3","resultStr":"{\"title\":\"Trajectory-tracking of 6-RSS Stewart-Gough manipulator by feedback-linearization control using a novel inverse dynamic model based on the force distribution algorithm\",\"authors\":\"Zafer Mahmoud, Mohammad Reza Arvan, V. Nekoukar, M. Rezaei\",\"doi\":\"10.1080/13873954.2020.1754861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13873954.2020.1754861\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2020.1754861\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1754861","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Trajectory-tracking of 6-RSS Stewart-Gough manipulator by feedback-linearization control using a novel inverse dynamic model based on the force distribution algorithm
ABSTRACT 6-RSS Stewart-Gough parallel manipulator contains six crank-rod limbs connecting the base and moving platforms to each other, forming a 6DOF manipulator. In this paper, we introduce a novel decoupled inverse dynamic model for this manipulator based on the Force Distribution Algorithm. The performance of the proposed model was evaluated in tracking a complex trajectory (of multiple segments with simultaneous translational and rotational motions) using feedback-linearization control in the joint space and compared with that of the Lagrangian inverse dynamic model. Results showed that this model leads to a better performance in feedback-linearization control, especially when the reference trajectory is quantized, and with less calculation burden in comparison with the Lagrangian model. The control system employing both models showed robustness against payload uncertainty on the moving platform (150% of the moving platform’s mass). The performance assessment and the robustness approval were performed in simulation using a Simscape model specifically built for this purpose in the Simulink environment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.