智利旅游需求预测:使用季节性自回归模型的区域分析

IF 0.3 Q4 HOSPITALITY, LEISURE, SPORT & TOURISM PERIPLO SUSTENTABLE Pub Date : 2021-11-04 DOI:10.36677/ELPERIPLO.V0I41.12975
Cristian Mondaca-Marino, Ailin Arriagada Millaman, P. Piffaut
{"title":"智利旅游需求预测:使用季节性自回归模型的区域分析","authors":"Cristian Mondaca-Marino, Ailin Arriagada Millaman, P. Piffaut","doi":"10.36677/ELPERIPLO.V0I41.12975","DOIUrl":null,"url":null,"abstract":"This paper presents Chilean tourism demand describing its behavior for both the country and each of its regions, the analyzed period comprises 2014:01 to 2019:02. The seasonal autoregressive model (SARIMA) process was used to model the series growing dynamics. Results show that best-fitting models capture nonlinear growth, seasonal patterns, and series volatility, and make it possible to describe not so obvious behaviors, such as the seasonal process order or long-term growth trends. From a public policy point of view, this provides relevant information for decision-makers to manage touristic services and infrastructure in a better way. Regional and countries’ forecasted demand presents a low error percentage, less than 2%, though in some regions this value is underestimated overestimated in others.","PeriodicalId":53973,"journal":{"name":"PERIPLO SUSTENTABLE","volume":"1 1","pages":"234-254"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting tourism demand in Chile: Regional analysis using the Seasonal Autoregressive Model\",\"authors\":\"Cristian Mondaca-Marino, Ailin Arriagada Millaman, P. Piffaut\",\"doi\":\"10.36677/ELPERIPLO.V0I41.12975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Chilean tourism demand describing its behavior for both the country and each of its regions, the analyzed period comprises 2014:01 to 2019:02. The seasonal autoregressive model (SARIMA) process was used to model the series growing dynamics. Results show that best-fitting models capture nonlinear growth, seasonal patterns, and series volatility, and make it possible to describe not so obvious behaviors, such as the seasonal process order or long-term growth trends. From a public policy point of view, this provides relevant information for decision-makers to manage touristic services and infrastructure in a better way. Regional and countries’ forecasted demand presents a low error percentage, less than 2%, though in some regions this value is underestimated overestimated in others.\",\"PeriodicalId\":53973,\"journal\":{\"name\":\"PERIPLO SUSTENTABLE\",\"volume\":\"1 1\",\"pages\":\"234-254\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIPLO SUSTENTABLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36677/ELPERIPLO.V0I41.12975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HOSPITALITY, LEISURE, SPORT & TOURISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIPLO SUSTENTABLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36677/ELPERIPLO.V0I41.12975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了智利的旅游需求,描述了其对国家和每个地区的行为,分析期间包括2014:01至2019:02。采用季节自回归模型(SARIMA)过程对序列生长动态进行建模。结果表明,最佳拟合模型捕捉了非线性增长、季节模式和序列波动,并使描述季节性过程顺序或长期增长趋势等不那么明显的行为成为可能。从公共政策的角度来看,这为决策者更好地管理旅游服务和基础设施提供了相关信息。区域和国家预测需求的误差百分比较低,不到2%,尽管在某些区域,这一值被低估了,在其他区域则被高估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting tourism demand in Chile: Regional analysis using the Seasonal Autoregressive Model
This paper presents Chilean tourism demand describing its behavior for both the country and each of its regions, the analyzed period comprises 2014:01 to 2019:02. The seasonal autoregressive model (SARIMA) process was used to model the series growing dynamics. Results show that best-fitting models capture nonlinear growth, seasonal patterns, and series volatility, and make it possible to describe not so obvious behaviors, such as the seasonal process order or long-term growth trends. From a public policy point of view, this provides relevant information for decision-makers to manage touristic services and infrastructure in a better way. Regional and countries’ forecasted demand presents a low error percentage, less than 2%, though in some regions this value is underestimated overestimated in others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PERIPLO SUSTENTABLE
PERIPLO SUSTENTABLE HOSPITALITY, LEISURE, SPORT & TOURISM-
自引率
50.00%
发文量
32
期刊最新文献
Análisis del perfil del turista y su relación con la demanda de turismo rural en el Estado de México (México) Estado del conocimiento sobre la participación de mujeres indígenas en el turismo de América Latina Índice NID para una promoción más efectiva del turismo cultural en ciudades Patrimonio de la Humanidad Participación comunitaria e identidad en los proyectos de turismo en zonas indígenas en el estado de Nayarit, México Evaluation of the potential of the observation of Alouatta palliata for local conservation and development in fragments of rainforests: the case of the Isthmus of Tehuantepec, Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1