{"title":"具有无界单调率的平均场零范围过程:混合时间、截止时间和庞卡罗常数","authors":"Hong-Quan Tran","doi":"10.1214/22-aap1851","DOIUrl":null,"url":null,"abstract":"We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mean-field zero-range process with unbounded monotone rates: Mixing time, cutoff, and Poincaré constant\",\"authors\":\"Hong-Quan Tran\",\"doi\":\"10.1214/22-aap1851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1851\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1851","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The mean-field zero-range process with unbounded monotone rates: Mixing time, cutoff, and Poincaré constant
We consider the mean-field Zero-Range process in the regime where the potential function $r$ is increasing to infinity at sublinear speed, and the density of particles is bounded. We determine the mixing time of the system, and establish cutoff. We also prove that the Poincare constant is bounded away from zero and infinity. This mean-field estimate extends to arbitrary geometries via a comparison argument. Our proof uses the path-coupling method of Bubley and Dyer and stochastic calculus.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.