光甘草的计算机网络药理学研究:分析悉达药用植物抗COVID-19免疫增强的植物化学特性

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-06-17 DOI:10.1016/bs.apcsb.2023.04.003
Karthik Sekaran, Ashwini Karthik, Rinku Polachirakkal Varghese, P Sathiyarajeswaran, M S Shree Devi, R Siva, C George Priya Doss
{"title":"光甘草的计算机网络药理学研究:分析悉达药用植物抗COVID-19免疫增强的植物化学特性","authors":"Karthik Sekaran, Ashwini Karthik, Rinku Polachirakkal Varghese, P Sathiyarajeswaran, M S Shree Devi, R Siva, C George Priya Doss","doi":"10.1016/bs.apcsb.2023.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual's health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19 and promote immunity boost against the severity of the infection. Athimadhura Chooranam, a polyherbal formulation containing Glycyrrhiza glabra as the main ingredient, is recommended as an antiviral Siddha herb by the Ministry of AYUSH. This paper is intended to identify the phytoconstituents of Glycyrrhiza glabra that are actively involved in preventing individuals from COVID-19 transmission. The modulated pathways, enrichment study, and drug-likeness are calculated from the target proteins of the phytoconstituents at the pharmacological activity (Pa) of more than 0.7. Liquiritigenin and Isoliquiritin, the natural compounds in Glycyrrhiza glabra, belong to the flavonoid class and exhibit ameliorative effects against COVID-19. The latter compound displays a higher protein interaction to a maximum of six, out of which HMOX1, PLAU, and PGR are top-hub genes. ADMET screening further confirms the significance of the abovementioned components containing better drug-likeness. The molecular docking and molecular dynamics method identified liquiritigenin as a possible lead molecule capable of inhibiting the activity of the major protease protein of SARS-CoV-2. The findings emphasize the importance of in silico network pharmacological assessments in delivering cost-effective, time-bound clinical drugs.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"1 1","pages":"233-255"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275734/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19.\",\"authors\":\"Karthik Sekaran, Ashwini Karthik, Rinku Polachirakkal Varghese, P Sathiyarajeswaran, M S Shree Devi, R Siva, C George Priya Doss\",\"doi\":\"10.1016/bs.apcsb.2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual's health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19 and promote immunity boost against the severity of the infection. Athimadhura Chooranam, a polyherbal formulation containing Glycyrrhiza glabra as the main ingredient, is recommended as an antiviral Siddha herb by the Ministry of AYUSH. This paper is intended to identify the phytoconstituents of Glycyrrhiza glabra that are actively involved in preventing individuals from COVID-19 transmission. The modulated pathways, enrichment study, and drug-likeness are calculated from the target proteins of the phytoconstituents at the pharmacological activity (Pa) of more than 0.7. Liquiritigenin and Isoliquiritin, the natural compounds in Glycyrrhiza glabra, belong to the flavonoid class and exhibit ameliorative effects against COVID-19. The latter compound displays a higher protein interaction to a maximum of six, out of which HMOX1, PLAU, and PGR are top-hub genes. ADMET screening further confirms the significance of the abovementioned components containing better drug-likeness. The molecular docking and molecular dynamics method identified liquiritigenin as a possible lead molecule capable of inhibiting the activity of the major protease protein of SARS-CoV-2. The findings emphasize the importance of in silico network pharmacological assessments in delivering cost-effective, time-bound clinical drugs.</p>\",\"PeriodicalId\":7376,\"journal\":{\"name\":\"Advances in protein chemistry and structural biology\",\"volume\":\"1 1\",\"pages\":\"233-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in protein chemistry and structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.apcsb.2023.04.003\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.04.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

免疫衰老是造成严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)死亡率的一个相关因素。免疫系统的变化与年龄密切相关,并导致个人健康状况恶化。古印度的传统医学通过药用植物提高自然免疫力,从而有效治疗 COVID-19。甘草的抗炎和抗病毒特性可有效对抗 COVID-19,促进免疫力的提高,减轻感染的严重程度。Athimadhura Chooranam 是一种以甘草为主要成分的多草药配方,被 AYUSH 部推荐为抗病毒 Siddha 草药。本文旨在确定甘草中积极参与预防 COVID-19 传播的植物成分。根据药理活性(Pa)大于 0.7 的植物成分的靶蛋白,计算出调节途径、富集研究和药物相似性。甘草中的天然化合物 Liquiritigenin 和 Isoliquiritin 属于黄酮类化合物,对 COVID-19 具有改善作用。甘草中的天然化合物甘草次苷属于黄酮类化合物,对 COVID-19 具有改善作用。甘草次苷显示出较高的蛋白质相互作用,最多可达 6 个,其中 HMOX1、PLAU 和 PGR 是最重要的枢纽基因。ADMET 筛选进一步证实了上述成分具有更好的药物亲和性。分子对接和分子动力学方法发现,liquiritigenin 是一种可能的先导分子,能够抑制 SARS-CoV-2 主要蛋白酶蛋白的活性。这些发现强调了硅网络药理学评估在提供具有成本效益、有时限的临床药物方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19.

Immunosenescence is a pertinent factor in the mortality rate caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The changes in the immune system are strongly associated with age and provoke the deterioration of the individual's health. Traditional medical practices in ancient India effectively deal with COVID-19 by boosting natural immunity through medicinal plants. The anti-inflammatory and antiviral properties of Glycyrrhiza glabra are potent in fighting against COVID-19 and promote immunity boost against the severity of the infection. Athimadhura Chooranam, a polyherbal formulation containing Glycyrrhiza glabra as the main ingredient, is recommended as an antiviral Siddha herb by the Ministry of AYUSH. This paper is intended to identify the phytoconstituents of Glycyrrhiza glabra that are actively involved in preventing individuals from COVID-19 transmission. The modulated pathways, enrichment study, and drug-likeness are calculated from the target proteins of the phytoconstituents at the pharmacological activity (Pa) of more than 0.7. Liquiritigenin and Isoliquiritin, the natural compounds in Glycyrrhiza glabra, belong to the flavonoid class and exhibit ameliorative effects against COVID-19. The latter compound displays a higher protein interaction to a maximum of six, out of which HMOX1, PLAU, and PGR are top-hub genes. ADMET screening further confirms the significance of the abovementioned components containing better drug-likeness. The molecular docking and molecular dynamics method identified liquiritigenin as a possible lead molecule capable of inhibiting the activity of the major protease protein of SARS-CoV-2. The findings emphasize the importance of in silico network pharmacological assessments in delivering cost-effective, time-bound clinical drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
期刊最新文献
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. Application of functional proteomics in understanding RNA virus-mediated infection. Functional proteomics based on protein microarray technology for biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1