中温燃料电池电解质材料CeO2–Sm2O3和CeO2–Nd2O3体系中细分散粉末和陶瓷物理化学性能的比较研究

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-06-04 DOI:10.3390/ceramics6020073
M. Kalinina, D. A. Dyuskina, S. Mjakin, I. Kruchinina, O. Shilova
{"title":"中温燃料电池电解质材料CeO2–Sm2O3和CeO2–Nd2O3体系中细分散粉末和陶瓷物理化学性能的比较研究","authors":"M. Kalinina, D. A. Dyuskina, S. Mjakin, I. Kruchinina, O. Shilova","doi":"10.3390/ceramics6020073","DOIUrl":null,"url":null,"abstract":"Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 °C) and open porosity in the range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively characterized. In general, the prepared materials were found to possess a mixed type of electrical conductivity, but in the medium-temperature range, the ionic component was predominant (ion transfer numbers ti = 0.93–0.73 at 300–700 °C). The highest ionic conductivity was observed for CeO2-based samples containing 20 mol.% Sm2O3 (σ700°C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3 (σ700°C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 °C. The physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells\",\"authors\":\"M. Kalinina, D. A. Dyuskina, S. Mjakin, I. Kruchinina, O. Shilova\",\"doi\":\"10.3390/ceramics6020073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 °C) and open porosity in the range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively characterized. In general, the prepared materials were found to possess a mixed type of electrical conductivity, but in the medium-temperature range, the ionic component was predominant (ion transfer numbers ti = 0.93–0.73 at 300–700 °C). The highest ionic conductivity was observed for CeO2-based samples containing 20 mol.% Sm2O3 (σ700°C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3 (σ700°C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 °C. The physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6020073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6020073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

基于氢氧化物共沉淀法,通过液相技术合成了分散的(CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20)和(CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25)粉末,并用于制备具有荧石样固溶体的陶瓷材料,CSR范围为69-88 nm(1300℃退火),开孔率范围为0.6-6.2%。对合成材料的理化性质进行了比较表征。总的来说,制备的材料具有混合型导电性,但在中温范围内,离子成分占主导地位(300-700℃时离子转移数ti = 0.93-0.73)。在500 ~ 700℃范围内,含20 mol.% Sm2O3 (σ700℃= 3.3 × 10−2 S/cm)和15 mol.% Nd2O3 (σ700℃= 0.48 × 10−2 S/cm)的ceo2基样品的离子电导率最高。所获得的陶瓷材料的物理化学性质(密度、开孔率、电导率类型和机制)使其成为中温燃料电池的固体氧化物电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Physicochemical Properties of Finely Dispersed Powders and Ceramics in the Systems CeO2–Sm2O3 and CeO2–Nd2O3 as Electrolyte Materials for Medium Temperature Fuel Cells
Finely dispersed (CeO2)1−x(Sm2O3)x (x = 0.05, 0.10, 0.20) and (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders were synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and were used to obtain ceramic materials comprising fluorite-like solid solutions with CSR in the range 69–88 nm (upon annealing at 1300 °C) and open porosity in the range 0.6–6.2%. The physicochemical properties of the synthesized materials were comparatively characterized. In general, the prepared materials were found to possess a mixed type of electrical conductivity, but in the medium-temperature range, the ionic component was predominant (ion transfer numbers ti = 0.93–0.73 at 300–700 °C). The highest ionic conductivity was observed for CeO2-based samples containing 20 mol.% Sm2O3 (σ700°C = 3.3 × 10−2 S/cm) and 15 mol.% Nd2O3 (σ700°C = 0.48 × 10−2 S/cm) was in the temperature range 500–700 °C. The physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1