基于非对称劈裂贴片单元的双极化反射天线混合相位误差分析

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electromagnetics Pub Date : 2022-08-18 DOI:10.1080/02726343.2022.2147667
Min Wang, Yuxin Mo, Xuan Li, Nan Hu, Wenqing Xie, Zhengchuan Chen
{"title":"基于非对称劈裂贴片单元的双极化反射天线混合相位误差分析","authors":"Min Wang, Yuxin Mo, Xuan Li, Nan Hu, Wenqing Xie, Zhengchuan Chen","doi":"10.1080/02726343.2022.2147667","DOIUrl":null,"url":null,"abstract":"ABSTRACT A hybrid phase error analysis for dual-polarized reflectarray antenna using asymmetric split patch element is proposed in this article. The asymmetric split patch consists of a four-leaf patch and two split rings of different size where small one makes the patch asymmeric along y-axis and large one is used for impedance matching. And a complete 360° phase shift is obtained by using variable-size approach and flipping split patch 180° along y-axis. Then, we use hybrid phase error analysis approach to analyze and optimize the influence of phase sensitivity, quasi-periodic influence and phase constant on the reflectarray antenna. The simulated results show that maximum of element phase sensitivity is reduced by 275°/mm and element quasi-periodic phase error is dropped by 38°. Furthermore, dual-polarized reflectarray composed of 676 asymmetric split patch elements is designed, fabricated and measured. The measured gain of the proposed antenna is 29.9 dBi @10.0 GHz with aperture efficiency of 46%. The −1 dB gain bandwidth is 12% @10.0 GHz. The measured results show that the proposed antenna can improve phase accuracy effectively by using hybrid phase error analysis approach with asymmetric split patch.","PeriodicalId":50542,"journal":{"name":"Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid phase error analysis for dual-polarized reflectarray antenna using asymmetric split patch element\",\"authors\":\"Min Wang, Yuxin Mo, Xuan Li, Nan Hu, Wenqing Xie, Zhengchuan Chen\",\"doi\":\"10.1080/02726343.2022.2147667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A hybrid phase error analysis for dual-polarized reflectarray antenna using asymmetric split patch element is proposed in this article. The asymmetric split patch consists of a four-leaf patch and two split rings of different size where small one makes the patch asymmeric along y-axis and large one is used for impedance matching. And a complete 360° phase shift is obtained by using variable-size approach and flipping split patch 180° along y-axis. Then, we use hybrid phase error analysis approach to analyze and optimize the influence of phase sensitivity, quasi-periodic influence and phase constant on the reflectarray antenna. The simulated results show that maximum of element phase sensitivity is reduced by 275°/mm and element quasi-periodic phase error is dropped by 38°. Furthermore, dual-polarized reflectarray composed of 676 asymmetric split patch elements is designed, fabricated and measured. The measured gain of the proposed antenna is 29.9 dBi @10.0 GHz with aperture efficiency of 46%. The −1 dB gain bandwidth is 12% @10.0 GHz. The measured results show that the proposed antenna can improve phase accuracy effectively by using hybrid phase error analysis approach with asymmetric split patch.\",\"PeriodicalId\":50542,\"journal\":{\"name\":\"Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02726343.2022.2147667\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02726343.2022.2147667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于非对称劈裂贴片单元的双极化反射天线混合相位误差分析方法。非对称分裂片由一个四叶片和两个不同大小的分裂环组成,小的分裂环使该片沿y轴不对称,大的分裂环用于阻抗匹配。采用变尺寸方法,沿y轴翻转180°,实现了360°的完全相移。然后,采用混合相位误差分析方法,分析和优化了相位灵敏度、准周期影响和相位常数对反射天线的影响。仿真结果表明,元件相位灵敏度最大值减小275°/mm,准周期相位误差减小38°。设计、制作并测量了由676个非对称分裂贴片单元组成的双偏振反射阵列。该天线的实测增益为29.9 dBi @10.0 GHz,孔径效率为46%。−1db增益带宽为12% @10.0 GHz。实测结果表明,采用非对称劈裂贴片的混合相位误差分析方法可以有效提高天线的相位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid phase error analysis for dual-polarized reflectarray antenna using asymmetric split patch element
ABSTRACT A hybrid phase error analysis for dual-polarized reflectarray antenna using asymmetric split patch element is proposed in this article. The asymmetric split patch consists of a four-leaf patch and two split rings of different size where small one makes the patch asymmeric along y-axis and large one is used for impedance matching. And a complete 360° phase shift is obtained by using variable-size approach and flipping split patch 180° along y-axis. Then, we use hybrid phase error analysis approach to analyze and optimize the influence of phase sensitivity, quasi-periodic influence and phase constant on the reflectarray antenna. The simulated results show that maximum of element phase sensitivity is reduced by 275°/mm and element quasi-periodic phase error is dropped by 38°. Furthermore, dual-polarized reflectarray composed of 676 asymmetric split patch elements is designed, fabricated and measured. The measured gain of the proposed antenna is 29.9 dBi @10.0 GHz with aperture efficiency of 46%. The −1 dB gain bandwidth is 12% @10.0 GHz. The measured results show that the proposed antenna can improve phase accuracy effectively by using hybrid phase error analysis approach with asymmetric split patch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electromagnetics
Electromagnetics 工程技术-工程:电子与电气
CiteScore
1.60
自引率
12.50%
发文量
31
审稿时长
6 months
期刊介绍: Publishing eight times per year, Electromagnetics offers refereed papers that span the entire broad field of electromagnetics and serves as an exceptional reference source of permanent archival value. Included in this wide ranging scope of materials are developments in electromagnetic theory, high frequency techniques, antennas and randomes, arrays, numerical techniques, scattering and diffraction, materials, and printed circuits. The journal also serves as a forum for deliberations on innovations in the field. Additionally, special issues give more in-depth coverage to topics of immediate importance. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. Submissions can be made via email or postal mail.
期刊最新文献
A broad-beam reflective metasurface enhancing signal coverage for indoor wireless communication Modelling of defected structures and stub based compact ultra-wideband bandpass filter (UWB-BPF) with a single notched band A tri-band shared-aperture antenna with a scanning beam for the sub-6 GHz and millimeter-wave applications A high-selectivity filtering DDPA with raised DDPs and metal vias Powerful numerical method for analysis of electromagnetic scattering from multiple 3D coated targets buried under rough surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1