利用cds修饰的TiO2纳米管阵列增强2,4,6-三氯苯酚的产氢能力

R. Ratnawati, S. Slamet, Farah Diba Toya, Satrio Kuntolaksono
{"title":"利用cds修饰的TiO2纳米管阵列增强2,4,6-三氯苯酚的产氢能力","authors":"R. Ratnawati, S. Slamet, Farah Diba Toya, Satrio Kuntolaksono","doi":"10.14710/ijred.2022.45139","DOIUrl":null,"url":null,"abstract":"Nowadays, the lack of renewable energy such as hydrogen, and other environmental issues are problems that must be resolved. 2,4,6-Trichlorophenol (2,4,6-TCP) is classified as a recalcitrant pollutant due to its carcinogenic properties, high toxicity, and dangers to the environment therefore it needs to be eliminated. Hydrogen production using organic pollutant (2,4,6-TCP solution) as a hole scavenger on CdS-TiO2 nanotube arrays photocatalyst (TNTA-CdS) has been investigated at various CdS loading on TNTA and the initial concentration of 2,4,6-TCP. The TNTA sample was prepared by anodization and followed by an electrodeposition method to decorate CdS on TNTA. The H2 which was generated by reduction H+ and the 2,4,6-TCP removal was performed simultaneously by photocatalysis with TNTA-CdS as photocatalyst. The mole ratio of CdCl2:CH3CSNH2 as precursors of CdS deposited on TNTA (CdS loading) were 0.1:0.06, 0.2:0.12, and 0.4:0.24 and the initial concentration of 2,4,6-TCP were 10, 20 and 40 ppm. Meanwhile, the photocatalytic performance of the variations in CdS loading on TNTA and initial concentration of 2,4,6-TCP toward hydrogen generation was investigated in a photoreactor for 240 minutes under visible light irradiation with a mercury lamp as a photon source. The CdS decorating on TNTA was confirmed by SEM, EDX, and X-ray diffraction (XRD) characterization. According to the UV-Vis and XRD analysis, the TNTA-CdS samples have bandgap energies in the range of 2.71 - 2.89 eV and comprise a 100% anatase phase. Based on the photocatalysis results, the optimum composition of CdS loading is 0.2:0.16 (TNTA-CdS-2) which produced the highest total hydrogen (2.155 mmol/g) compared to the other compositions and produced 1.5 times higher compared to TNTA at 40 ppm of 2,4,6-TCP.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Hydrogen Generation using CdS-modified TiO2 Nanotube Arrays in 2,4,6-Trichlorophenol as a Hole Scavenger\",\"authors\":\"R. Ratnawati, S. Slamet, Farah Diba Toya, Satrio Kuntolaksono\",\"doi\":\"10.14710/ijred.2022.45139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the lack of renewable energy such as hydrogen, and other environmental issues are problems that must be resolved. 2,4,6-Trichlorophenol (2,4,6-TCP) is classified as a recalcitrant pollutant due to its carcinogenic properties, high toxicity, and dangers to the environment therefore it needs to be eliminated. Hydrogen production using organic pollutant (2,4,6-TCP solution) as a hole scavenger on CdS-TiO2 nanotube arrays photocatalyst (TNTA-CdS) has been investigated at various CdS loading on TNTA and the initial concentration of 2,4,6-TCP. The TNTA sample was prepared by anodization and followed by an electrodeposition method to decorate CdS on TNTA. The H2 which was generated by reduction H+ and the 2,4,6-TCP removal was performed simultaneously by photocatalysis with TNTA-CdS as photocatalyst. The mole ratio of CdCl2:CH3CSNH2 as precursors of CdS deposited on TNTA (CdS loading) were 0.1:0.06, 0.2:0.12, and 0.4:0.24 and the initial concentration of 2,4,6-TCP were 10, 20 and 40 ppm. Meanwhile, the photocatalytic performance of the variations in CdS loading on TNTA and initial concentration of 2,4,6-TCP toward hydrogen generation was investigated in a photoreactor for 240 minutes under visible light irradiation with a mercury lamp as a photon source. The CdS decorating on TNTA was confirmed by SEM, EDX, and X-ray diffraction (XRD) characterization. According to the UV-Vis and XRD analysis, the TNTA-CdS samples have bandgap energies in the range of 2.71 - 2.89 eV and comprise a 100% anatase phase. Based on the photocatalysis results, the optimum composition of CdS loading is 0.2:0.16 (TNTA-CdS-2) which produced the highest total hydrogen (2.155 mmol/g) compared to the other compositions and produced 1.5 times higher compared to TNTA at 40 ppm of 2,4,6-TCP.\",\"PeriodicalId\":44938,\"journal\":{\"name\":\"International Journal of Renewable Energy Development-IJRED\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development-IJRED\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/ijred.2022.45139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2022.45139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

如今,氢等可再生能源的缺乏以及其他环境问题是必须解决的问题。2,4,6-三氯苯酚(2,4,6- tcp)具有致癌性、高毒性和环境危害性,属于顽固性污染物,需要淘汰。研究了以有机污染物(2,4,6- tcp溶液)作为孔洞清除剂,在不同cd负载和2,4,6- tcp初始浓度条件下,CdS- tio2纳米管阵列光催化剂(TNTA-CdS)上的制氢反应。采用阳极氧化法制备TNTA样品,然后采用电沉积法在TNTA表面装饰cd。以TNTA-CdS为光催化剂,同时进行H+还原生成H2和去除2,4,6- tcp的反应。CdCl2:CH3CSNH2的摩尔比分别为0.1:0.06、0.2:0.12和0.4:0.24,2、4、6-TCP的初始浓度分别为10、20和40 ppm。同时,以水银灯为光子源,在可见光照射240 min的光反应器中,研究了cd负载TNTA和2,4,6- tcp初始浓度的变化对制氢的光催化性能。通过SEM, EDX和x射线衍射(XRD)表征证实了CdS在TNTA上的修饰。根据UV-Vis和XRD分析,TNTA-CdS样品的带隙能在2.71 ~ 2.89 eV之间,由100%锐钛矿相组成。结果表明,在2,4,6- tcp浓度为40 ppm时,CdS负载的最佳组合为0.2:0.16 (TNTA-CdS-2),与其他组合相比,总氢产量最高(2.155 mmol/g),比TNTA高1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Hydrogen Generation using CdS-modified TiO2 Nanotube Arrays in 2,4,6-Trichlorophenol as a Hole Scavenger
Nowadays, the lack of renewable energy such as hydrogen, and other environmental issues are problems that must be resolved. 2,4,6-Trichlorophenol (2,4,6-TCP) is classified as a recalcitrant pollutant due to its carcinogenic properties, high toxicity, and dangers to the environment therefore it needs to be eliminated. Hydrogen production using organic pollutant (2,4,6-TCP solution) as a hole scavenger on CdS-TiO2 nanotube arrays photocatalyst (TNTA-CdS) has been investigated at various CdS loading on TNTA and the initial concentration of 2,4,6-TCP. The TNTA sample was prepared by anodization and followed by an electrodeposition method to decorate CdS on TNTA. The H2 which was generated by reduction H+ and the 2,4,6-TCP removal was performed simultaneously by photocatalysis with TNTA-CdS as photocatalyst. The mole ratio of CdCl2:CH3CSNH2 as precursors of CdS deposited on TNTA (CdS loading) were 0.1:0.06, 0.2:0.12, and 0.4:0.24 and the initial concentration of 2,4,6-TCP were 10, 20 and 40 ppm. Meanwhile, the photocatalytic performance of the variations in CdS loading on TNTA and initial concentration of 2,4,6-TCP toward hydrogen generation was investigated in a photoreactor for 240 minutes under visible light irradiation with a mercury lamp as a photon source. The CdS decorating on TNTA was confirmed by SEM, EDX, and X-ray diffraction (XRD) characterization. According to the UV-Vis and XRD analysis, the TNTA-CdS samples have bandgap energies in the range of 2.71 - 2.89 eV and comprise a 100% anatase phase. Based on the photocatalysis results, the optimum composition of CdS loading is 0.2:0.16 (TNTA-CdS-2) which produced the highest total hydrogen (2.155 mmol/g) compared to the other compositions and produced 1.5 times higher compared to TNTA at 40 ppm of 2,4,6-TCP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
期刊最新文献
Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman Solid waste management by RDF production from landfilled waste to renewable fuel of Nonthaburi Computational prediction of green fuels from crude palm oil in fluid catalytic cracking riser Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Exploring the link between green energy, CO2 emissions, exchange rate and economic growth: Perspective from emerging South Asian countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1