{"title":"用多目标优化模块研究不同堆叠顺序的复合材料钻孔过程中产生的推力和扭矩","authors":"A. Dubey, J. Kumar, S. Kesarwani, R. Verma","doi":"10.1142/s1756973721500098","DOIUrl":null,"url":null,"abstract":"This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Thrust and Torque Generation During Drilling of Hybrid Laminates Composite with Different Stacking Sequences Using Multiobjective Optimization Module\",\"authors\":\"A. Dubey, J. Kumar, S. Kesarwani, R. Verma\",\"doi\":\"10.1142/s1756973721500098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1756973721500098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973721500098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Investigation on Thrust and Torque Generation During Drilling of Hybrid Laminates Composite with Different Stacking Sequences Using Multiobjective Optimization Module
This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.