用多目标优化模块研究不同堆叠顺序的复合材料钻孔过程中产生的推力和扭矩

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Multiscale Modelling Pub Date : 2021-10-09 DOI:10.1142/s1756973721500098
A. Dubey, J. Kumar, S. Kesarwani, R. Verma
{"title":"用多目标优化模块研究不同堆叠顺序的复合材料钻孔过程中产生的推力和扭矩","authors":"A. Dubey, J. Kumar, S. Kesarwani, R. Verma","doi":"10.1142/s1756973721500098","DOIUrl":null,"url":null,"abstract":"This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Thrust and Torque Generation During Drilling of Hybrid Laminates Composite with Different Stacking Sequences Using Multiobjective Optimization Module\",\"authors\":\"A. Dubey, J. Kumar, S. Kesarwani, R. Verma\",\"doi\":\"10.1142/s1756973721500098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1756973721500098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973721500098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了两种不同纤维在混杂层压复合材料制造中的增强作用。由于玻璃基和碳纤维基复合材料具有多种多样的力学性能,因此提出了复合材料具有多种高性能的可行性。然而,各向异性和非均匀性给制造商带来了一些加工挑战。在加工试验时,可通过选择适当的切削条件进行调节。评估了主轴转速(rpm)、进给速度(mm/min)和堆叠顺序(公式:见文)等工艺约束对钻孔试验中推力和扭矩的最佳值的影响。采用经济有效的手工铺层方法制备复合材料。采用不同的碳纤维层和玻璃纤维层制备了四种不同的杂化复合材料。通过改变进给速度和进给速度,分析各变量对加工性能的影响,得到不同结构下的精密孔。通过加工(钻孔)效率来评价复合材料的应用潜力。采用多目标优化-灰色关联分析(MOO-GRA)方法对钻井工艺的最优条件进行了研究。验证性试验结果表明,该MOO-GRA模块在加工环境下进行在线和离线质量控制的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on Thrust and Torque Generation During Drilling of Hybrid Laminates Composite with Different Stacking Sequences Using Multiobjective Optimization Module
This paper highlights the reinforcement of two different fibers in the manufacturing of hybrid laminate composites. The feasibility of glass and carbon fiber-based hybrid composites is proposed for various high performances due to their versatile mechanical properties. However, anisotropic and non-homogeneity nature creates several machining challenges for manufacturers. It can be regulated through the selection of proper cutting conditions during the machining test. The effect of process constraints like spindle speed (rpm), feed rate (mm/min), and stacking sequences ([Formula: see text] was evaluated for the optimum value of thrust force and Torque during the drilling test. The cost-effective method of hand layup has been used to fabricate the composites. Four different hybrid composites were developed using different layers of carbon fiber and glass fiber layers. The outcomes of variables on machining performances were analyzed by variation of feed rate and speed to acquire the precise holes in the different configurations. The application potential of the proposed composites is evaluated through the machining (drilling) efficiency. The optimal condition for the drilling procedure was investigated using the multiobjective optimization-Grey relation analysis (MOO-GRA) approach. The findings of the confirmatory test show the feasibility of the MOO-GRA module in a machining environment for online and offline quality control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
期刊最新文献
Parameters Influencing the Fatigue Behavior of Ti6AL4V Biaxial Testing of EPDM Rubbers for Automotive Applications Using a Uniaxial Testing Machine Crystal Plasticity Analyses Around Grain Boundaries Using a Dislocation Dynamics Finite Element Model Thermal analysis of MHD hybrid nanofluid on stretching/shrinking non-parallel walls with uncertain volume fractions Thermoelastic Interaction in a Functionally Graded Medium due to Refined Three-Phase-Lag Green-Naghdi Model Under Gravitational Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1