基于机器学习和集成学习算法的点对点僵尸网络检测

IF 0.5 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Information Security and Privacy Pub Date : 2023-03-03 DOI:10.4018/ijisp.319303
S. Baruah, D. Borah, V. Deka
{"title":"基于机器学习和集成学习算法的点对点僵尸网络检测","authors":"S. Baruah, D. Borah, V. Deka","doi":"10.4018/ijisp.319303","DOIUrl":null,"url":null,"abstract":"Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of Peer-to-Peer Botnet Using Machine Learning Techniques and Ensemble Learning Algorithm\",\"authors\":\"S. Baruah, D. Borah, V. Deka\",\"doi\":\"10.4018/ijisp.319303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisp.319303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisp.319303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

对等僵尸网络是数字数据面临的最大威胁之一。它已成为执行许多恶意活动的常见工具,如DDoS攻击、网络钓鱼攻击、传播垃圾邮件、身份盗窃、勒索软件、勒索攻击和许多其他欺诈活动。P2P僵尸网络具有很强的弹性和隐蔽性,并不断变异以规避安全机制。因此,有必要从正常流量中识别和检测僵尸网络流量。本文使用有监督的机器学习算法来检测P2P僵尸网络流量。本文还使用集成学习技术结合各种监督机器学习模型的性能进行预测。为了验证结果,使用了四个性能指标。这些是准确度、精确度、召回率和F1分数。实验结果表明,该方法的准确率为99.99%,准确率为99.81%,召回率为99.11%,F1得分为99.32%,优于以往的僵尸网络检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Peer-to-Peer Botnet Using Machine Learning Techniques and Ensemble Learning Algorithm
Peer-to-peer (P2P) botnet is one of the greatest threats to digital data. It has become a common tool for performing a lot of malicious activities such as DDoS attacks, phishing attacks, spreading spam, identity theft, ransomware, extortion attack, and many other fraudulent activities. P2P botnets are very resilient and stealthy and keep mutating to evade security mechanisms. Therefore, it has become necessary to identify and detect botnet flow from the normal flow. This paper uses supervised machine learning algorithms to detect P2P botnet flow. This paper also uses an ensemble learning technique to combine the performances of various supervised machine learning models to make predictions. To validate the results, four performance metrics have been used. These are accuracy, precision, recall, and F1-score. Experimental results show that the proposed approach delivers 99.99% accuracy, 99.81% precision, 99.11% recall, and 99.32% F1 score, which outperform the previous botnet detection approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Security and Privacy
International Journal of Information Security and Privacy COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.50
自引率
0.00%
发文量
73
期刊介绍: As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.
期刊最新文献
Adaptive Personalized Randomized Response Method Based on Local Differential Privacy A Novel CNN-LSTM Fusion-Based Intrusion Detection Method for Industrial Internet A System Dynamics Approach to Evaluate Advanced Persistent Threat Vectors Trust and Voice Biometrics Authentication for Internet of Things “Every Dog Has His Day”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1