Karthik Nayani, Yu Yang, Huaizhe Yu, Purvil Jani, M. Mavrikakis, N. Abbott
{"title":"有机会设计基于液晶的化学和生物传感器的领域","authors":"Karthik Nayani, Yu Yang, Huaizhe Yu, Purvil Jani, M. Mavrikakis, N. Abbott","doi":"10.1080/1358314x.2020.1819624","DOIUrl":null,"url":null,"abstract":"ABSTRACT The societal impact of liquid crystals (LCs) in electrooptical displays arrived after decades of research involving molecular-level design of LCs and their alignment layers, and elucidation of LC electrooptical phenomena at device scales. The anisotropic optical, mechanical and dielectric properties of LCs used in displays also make LCs remarkable amplifiers of their interactions with chemical and biological species, thus opening up the possibility that LCs may play an influential role in a data-driven society that depends on information coming from sensors. In this article, we describe ongoing efforts to design LC systems tailored for chemical and biological sensing, efforts that mirror the challenges and opportunities in LC design and alignment tackled several decades ago during development of LC electrooptical displays. Now, however, traditional design approaches based on structure–property relationships are being supplemented by data-driven methods such as machine learning. Recent studies also show that computational chemistry can greatly increase the rate of discovery of chemically responsive LC systems. Additionally, non-equilibrium states of LCs are being revealed to be useful for design of biological sensors and more complex autonomous systems that integrate self-regulated actuation along with sensing. These topics and others are addressed in this article with the aim of highlighting approaches and goals for future research that will realise the full potential of LC-based sensors.","PeriodicalId":18110,"journal":{"name":"Liquid Crystals Today","volume":"29 1","pages":"24 - 35"},"PeriodicalIF":0.7000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1358314x.2020.1819624","citationCount":"14","resultStr":"{\"title\":\"Areas of opportunity related to design of chemical and biological sensors based on liquid crystals\",\"authors\":\"Karthik Nayani, Yu Yang, Huaizhe Yu, Purvil Jani, M. Mavrikakis, N. Abbott\",\"doi\":\"10.1080/1358314x.2020.1819624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The societal impact of liquid crystals (LCs) in electrooptical displays arrived after decades of research involving molecular-level design of LCs and their alignment layers, and elucidation of LC electrooptical phenomena at device scales. The anisotropic optical, mechanical and dielectric properties of LCs used in displays also make LCs remarkable amplifiers of their interactions with chemical and biological species, thus opening up the possibility that LCs may play an influential role in a data-driven society that depends on information coming from sensors. In this article, we describe ongoing efforts to design LC systems tailored for chemical and biological sensing, efforts that mirror the challenges and opportunities in LC design and alignment tackled several decades ago during development of LC electrooptical displays. Now, however, traditional design approaches based on structure–property relationships are being supplemented by data-driven methods such as machine learning. Recent studies also show that computational chemistry can greatly increase the rate of discovery of chemically responsive LC systems. Additionally, non-equilibrium states of LCs are being revealed to be useful for design of biological sensors and more complex autonomous systems that integrate self-regulated actuation along with sensing. These topics and others are addressed in this article with the aim of highlighting approaches and goals for future research that will realise the full potential of LC-based sensors.\",\"PeriodicalId\":18110,\"journal\":{\"name\":\"Liquid Crystals Today\",\"volume\":\"29 1\",\"pages\":\"24 - 35\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1358314x.2020.1819624\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1358314x.2020.1819624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1358314x.2020.1819624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Areas of opportunity related to design of chemical and biological sensors based on liquid crystals
ABSTRACT The societal impact of liquid crystals (LCs) in electrooptical displays arrived after decades of research involving molecular-level design of LCs and their alignment layers, and elucidation of LC electrooptical phenomena at device scales. The anisotropic optical, mechanical and dielectric properties of LCs used in displays also make LCs remarkable amplifiers of their interactions with chemical and biological species, thus opening up the possibility that LCs may play an influential role in a data-driven society that depends on information coming from sensors. In this article, we describe ongoing efforts to design LC systems tailored for chemical and biological sensing, efforts that mirror the challenges and opportunities in LC design and alignment tackled several decades ago during development of LC electrooptical displays. Now, however, traditional design approaches based on structure–property relationships are being supplemented by data-driven methods such as machine learning. Recent studies also show that computational chemistry can greatly increase the rate of discovery of chemically responsive LC systems. Additionally, non-equilibrium states of LCs are being revealed to be useful for design of biological sensors and more complex autonomous systems that integrate self-regulated actuation along with sensing. These topics and others are addressed in this article with the aim of highlighting approaches and goals for future research that will realise the full potential of LC-based sensors.