多相光催化与膜蒸馏联合处理废水的研究进展

Q4 Materials Science Chimica Techno Acta Pub Date : 2023-03-22 DOI:10.15826/chimtech.2023.10.1.14
Sarah A. Abdulrahman, Salah S. Ibraheem, Z. Shnain
{"title":"多相光催化与膜蒸馏联合处理废水的研究进展","authors":"Sarah A. Abdulrahman, Salah S. Ibraheem, Z. Shnain","doi":"10.15826/chimtech.2023.10.1.14","DOIUrl":null,"url":null,"abstract":"The need for efficient remediation solutions to wastewater has risen due to the concerning prevalence of toxic organic pollutants. It is possible for the linked photocatalysis-membrane separation system to concurrently achieve the photoreaction of pollutants and their removal from wastewater in order to accomplish the goal of completely purifying the wastewater. This investigation's objective is to provide analytical overview of the photocatalytic and membrane coupling process, photocatalytic membrane reactors, and the potential applications of these technologies in the treatment of wastewater for the persistent organic matter removal. In the review, an examination of photocatalytic and membrane processes to remove organic compounds from wastewater is presented. Based on the literature analysis, it was observed that the application of photocatalytic membrane reactors is significantly influenced by a wide variety of factors. Some of these factors include pollutant concentration, dissolved oxygen, aeration, pH, and hydraulic retention time. Light intensity is another factor that has a significant influence. It was also revealed how distillation membranes work when integrated with photocatalytic process. This brief overview will help researchers understand how successful coupled photocatalytic and membrane distillation are in the treatment of wastewater containing organic pollutants.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of wastewater treatment using combined heterogeneous photocatalysis and membrane distillation\",\"authors\":\"Sarah A. Abdulrahman, Salah S. Ibraheem, Z. Shnain\",\"doi\":\"10.15826/chimtech.2023.10.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for efficient remediation solutions to wastewater has risen due to the concerning prevalence of toxic organic pollutants. It is possible for the linked photocatalysis-membrane separation system to concurrently achieve the photoreaction of pollutants and their removal from wastewater in order to accomplish the goal of completely purifying the wastewater. This investigation's objective is to provide analytical overview of the photocatalytic and membrane coupling process, photocatalytic membrane reactors, and the potential applications of these technologies in the treatment of wastewater for the persistent organic matter removal. In the review, an examination of photocatalytic and membrane processes to remove organic compounds from wastewater is presented. Based on the literature analysis, it was observed that the application of photocatalytic membrane reactors is significantly influenced by a wide variety of factors. Some of these factors include pollutant concentration, dissolved oxygen, aeration, pH, and hydraulic retention time. Light intensity is another factor that has a significant influence. It was also revealed how distillation membranes work when integrated with photocatalytic process. This brief overview will help researchers understand how successful coupled photocatalytic and membrane distillation are in the treatment of wastewater containing organic pollutants.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

由于有毒有机污染物的普遍存在,对废水有效修复解决方案的需求已经增加。连接的光催化膜分离系统可以同时实现污染物的光反应和从废水中去除污染物,以实现完全净化废水的目标。本研究的目的是对光催化和膜偶联工艺、光催化膜反应器以及这些技术在废水处理中去除持久性有机物的潜在应用进行分析概述。综述了光催化和膜法去除废水中有机化合物的研究进展。基于文献分析,观察到光催化膜反应器的应用受到多种因素的显著影响。其中一些因素包括污染物浓度、溶解氧、曝气、pH和水力停留时间。光照强度是另一个有重大影响的因素。还揭示了蒸馏膜与光催化过程相结合时的工作原理。这一简要概述将有助于研究人员了解光催化和膜蒸馏在处理含有有机污染物的废水方面的成功程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of wastewater treatment using combined heterogeneous photocatalysis and membrane distillation
The need for efficient remediation solutions to wastewater has risen due to the concerning prevalence of toxic organic pollutants. It is possible for the linked photocatalysis-membrane separation system to concurrently achieve the photoreaction of pollutants and their removal from wastewater in order to accomplish the goal of completely purifying the wastewater. This investigation's objective is to provide analytical overview of the photocatalytic and membrane coupling process, photocatalytic membrane reactors, and the potential applications of these technologies in the treatment of wastewater for the persistent organic matter removal. In the review, an examination of photocatalytic and membrane processes to remove organic compounds from wastewater is presented. Based on the literature analysis, it was observed that the application of photocatalytic membrane reactors is significantly influenced by a wide variety of factors. Some of these factors include pollutant concentration, dissolved oxygen, aeration, pH, and hydraulic retention time. Light intensity is another factor that has a significant influence. It was also revealed how distillation membranes work when integrated with photocatalytic process. This brief overview will help researchers understand how successful coupled photocatalytic and membrane distillation are in the treatment of wastewater containing organic pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
期刊最新文献
Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds Cationic amphiphilic meroterpenoids: synthesis, antibacterial, antifungal and mutagenic activity Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1