Ti、Sr和B对A356.2级铝合金流动性的影响

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2022-10-22 DOI:10.3103/S1067821222050029
V. E. Bazhenov, I. I. Baranov, A. Yu. Titov, A. V. Sannikov, D. Yu. Ozherelkov, A. A. Lyskovich, A. V. Koltygin, V. D. Belov
{"title":"Ti、Sr和B对A356.2级铝合金流动性的影响","authors":"V. E. Bazhenov,&nbsp;I. I. Baranov,&nbsp;A. Yu. Titov,&nbsp;A. V. Sannikov,&nbsp;D. Yu. Ozherelkov,&nbsp;A. A. Lyskovich,&nbsp;A. V. Koltygin,&nbsp;V. D. Belov","doi":"10.3103/S1067821222050029","DOIUrl":null,"url":null,"abstract":"<p>At the present time, aluminum alloys with silicon are the most widespread construction materials. In order to increase the mechanical properties of aluminum alloys, modifying with Sr, Ti, and B is used. However, in the foundries, when using scrap and secondary aluminum alloys, the modifying elements are accumulated in alloys in the form of intermetallic particles, which can lead to a decrease in the level of castability. This is connected with the fact that the used modifiers exert a short-term effect and cannot be activated upon remelting. Hence it is necessary to add the modifiers without taking into account the intermetallic particles already contained in the melt. This paper is devoted to studies on the effect of additions of Sr, Ti, and B on the fluidity of an A356.2 grade aluminum alloy determined by means of vacuum fluidity testing. It is shown that, when AlSr10 and AlTi5B1 commercial master alloys are used (containing up to 0.3 wt % Sr and 0.5 wt % Ti), no decrease in fluidity is observed. However, adding the same amount of Ti with the use of a homemade AlTi4 master alloy leads to a considerable decrease in the fluidity. With the help of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the microstructure and phase composition of master alloys and of an A356.2 grade alloy after adding the mentioned master alloys have been investigated. Additionally, the Thermo-Calc software package has been used to evaluate the effect of modifier addition exerted on the phase composition and phase transition temperature of the alloy. It has been established that the effect of the modifier addition on the fluidity of the A356.2 grade alloy is connected with the shape and size of crystals containing the modifying elements in the master alloy structure. When there are coarse crystals formed by such phases, it is quite possible that the crystals are dissolved incompletely, which could hinder the free flow of melt.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 5","pages":"526 - 536"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Ti, Sr, and B Addition on the Fluidity of A356.2 Grade Aluminum Alloy\",\"authors\":\"V. E. Bazhenov,&nbsp;I. I. Baranov,&nbsp;A. Yu. Titov,&nbsp;A. V. Sannikov,&nbsp;D. Yu. Ozherelkov,&nbsp;A. A. Lyskovich,&nbsp;A. V. Koltygin,&nbsp;V. D. Belov\",\"doi\":\"10.3103/S1067821222050029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At the present time, aluminum alloys with silicon are the most widespread construction materials. In order to increase the mechanical properties of aluminum alloys, modifying with Sr, Ti, and B is used. However, in the foundries, when using scrap and secondary aluminum alloys, the modifying elements are accumulated in alloys in the form of intermetallic particles, which can lead to a decrease in the level of castability. This is connected with the fact that the used modifiers exert a short-term effect and cannot be activated upon remelting. Hence it is necessary to add the modifiers without taking into account the intermetallic particles already contained in the melt. This paper is devoted to studies on the effect of additions of Sr, Ti, and B on the fluidity of an A356.2 grade aluminum alloy determined by means of vacuum fluidity testing. It is shown that, when AlSr10 and AlTi5B1 commercial master alloys are used (containing up to 0.3 wt % Sr and 0.5 wt % Ti), no decrease in fluidity is observed. However, adding the same amount of Ti with the use of a homemade AlTi4 master alloy leads to a considerable decrease in the fluidity. With the help of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the microstructure and phase composition of master alloys and of an A356.2 grade alloy after adding the mentioned master alloys have been investigated. Additionally, the Thermo-Calc software package has been used to evaluate the effect of modifier addition exerted on the phase composition and phase transition temperature of the alloy. It has been established that the effect of the modifier addition on the fluidity of the A356.2 grade alloy is connected with the shape and size of crystals containing the modifying elements in the master alloy structure. When there are coarse crystals formed by such phases, it is quite possible that the crystals are dissolved incompletely, which could hinder the free flow of melt.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"63 5\",\"pages\":\"526 - 536\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1067821222050029\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222050029","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

目前,含硅铝合金是应用最广泛的建筑材料。为了提高铝合金的力学性能,常用Sr、Ti和B进行改性。然而,在铸造厂中,当使用废铝合金和二次铝合金时,改性元素以金属间颗粒的形式积聚在合金中,这可能导致浇注性水平下降。这与所使用的改性剂发挥短期效果并且不能在重熔时激活的事实有关。因此,有必要在不考虑熔体中已经含有的金属间颗粒的情况下添加改性剂。本文研究了Sr、Ti、B的加入对A356.2级铝合金流动性的影响,采用真空流动性试验测定了A356.2级铝合金的流动性。结果表明,当使用AlSr10和AlTi5B1商用母合金(含高达0.3 wt % Sr和0.5 wt % Ti)时,没有观察到流动性的降低。然而,使用自制的AlTi4中间合金加入等量的Ti会导致流动性显著降低。利用扫描电子显微镜(SEM)和能谱仪(EDS)研究了添加上述中间合金后的中间合金和A356.2级合金的显微组织和相组成。利用heat - calc软件分析了改性剂的加入对合金相组成和相变温度的影响。结果表明,加入改性剂对A356.2级合金流动性的影响与主合金组织中含有改性元素的晶体的形状和大小有关。当这些相形成粗晶时,很可能晶体溶解不完全,这会阻碍熔体的自由流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Ti, Sr, and B Addition on the Fluidity of A356.2 Grade Aluminum Alloy

At the present time, aluminum alloys with silicon are the most widespread construction materials. In order to increase the mechanical properties of aluminum alloys, modifying with Sr, Ti, and B is used. However, in the foundries, when using scrap and secondary aluminum alloys, the modifying elements are accumulated in alloys in the form of intermetallic particles, which can lead to a decrease in the level of castability. This is connected with the fact that the used modifiers exert a short-term effect and cannot be activated upon remelting. Hence it is necessary to add the modifiers without taking into account the intermetallic particles already contained in the melt. This paper is devoted to studies on the effect of additions of Sr, Ti, and B on the fluidity of an A356.2 grade aluminum alloy determined by means of vacuum fluidity testing. It is shown that, when AlSr10 and AlTi5B1 commercial master alloys are used (containing up to 0.3 wt % Sr and 0.5 wt % Ti), no decrease in fluidity is observed. However, adding the same amount of Ti with the use of a homemade AlTi4 master alloy leads to a considerable decrease in the fluidity. With the help of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the microstructure and phase composition of master alloys and of an A356.2 grade alloy after adding the mentioned master alloys have been investigated. Additionally, the Thermo-Calc software package has been used to evaluate the effect of modifier addition exerted on the phase composition and phase transition temperature of the alloy. It has been established that the effect of the modifier addition on the fluidity of the A356.2 grade alloy is connected with the shape and size of crystals containing the modifying elements in the master alloy structure. When there are coarse crystals formed by such phases, it is quite possible that the crystals are dissolved incompletely, which could hinder the free flow of melt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
SHS Compaction of TiC-Based Cermets Using Mechanically Activated Mixtures Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide Process Research and Mechanism Analysis of Pellet Roasting and Monazite Decomposition Preparation of Mo25ZrB2 Cermet by Hot Pressing Sintering and Its Static Oxidation Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1