{"title":"视觉同步定位与映射中结合深度信息的特征提取与匹配","authors":"Yunpeng Sun, Xiaoli Li","doi":"10.1177/17298806231158298","DOIUrl":null,"url":null,"abstract":"Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature extraction and matching combined with depth information in visual simultaneous localization and mapping\",\"authors\":\"Yunpeng Sun, Xiaoli Li\",\"doi\":\"10.1177/17298806231158298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231158298\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231158298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Feature extraction and matching combined with depth information in visual simultaneous localization and mapping
Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.