视觉同步定位与映射中结合深度信息的特征提取与匹配

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2023-03-01 DOI:10.1177/17298806231158298
Yunpeng Sun, Xiaoli Li
{"title":"视觉同步定位与映射中结合深度信息的特征提取与匹配","authors":"Yunpeng Sun, Xiaoli Li","doi":"10.1177/17298806231158298","DOIUrl":null,"url":null,"abstract":"Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature extraction and matching combined with depth information in visual simultaneous localization and mapping\",\"authors\":\"Yunpeng Sun, Xiaoli Li\",\"doi\":\"10.1177/17298806231158298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231158298\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231158298","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

相机轨迹的估计对于视觉同步定位和映射的性能非常重要。然而,基于RGB图像的视觉同时定位和映射系统在诸如低纹理或大的照明变化的复杂情况下通常是不鲁棒的。为了解决这一问题,通过引入深度信息来增加更多的环境信息,并提出了一种结合深度信息的特征提取与匹配算法。本文首先讨论了深度图像用于特征点提取和匹配的内在机制。然后综合考虑深度信息和外观信息来提取和描述特征点。最后,将特征点的匹配问题转化为回归分类问题,以数据驱动的方式提出了匹配模型。实验结果表明,该算法具有较好的分布均匀性和匹配精度,能够有效地提高同时定位和映射系统的轨迹精度和漂移度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction and matching combined with depth information in visual simultaneous localization and mapping
Estimating the camera trajectories is very important for the performance of visual simultaneous localization and mapping. However, visual simultaneous localization and mapping systems based on RGB image are generally not robust in complex situations such as low-textures or large illumination variations. In order to solve this problem, more environmental information is added by introducing depth information, and a feature extraction and matching algorithm combining depth information is proposed. In this article, firstly, the intrinsic mechanism that depth image is used to extract and match feature points is discussed. Then depth information and appearance information are comprehensively considered to extract and describe feature points. Finally, the matching problem of feature points is transformed into a regression and classification problem, with which a matching model is presented in a data-driven way. Experimental results show that our algorithm has better distribution uniformity and matching accuracy and can effectively improve the trajectory accuracy and drift degree of the simultaneous localization and mapping system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1