阿萨巴斯卡盆地西南部帕特森湖走廊流体演化:流体包裹体约束及不整合相关铀矿化意义

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemistry-Exploration Environment Analysis Pub Date : 2021-08-01 DOI:10.1144/geochem2020-029
M. Rabiei, G. Chi, E. Potter, V. Tschirhart, C. MacKay, S. Frostad, R. McElroy, R. Ashley, B. McEwan
{"title":"阿萨巴斯卡盆地西南部帕特森湖走廊流体演化:流体包裹体约束及不整合相关铀矿化意义","authors":"M. Rabiei, G. Chi, E. Potter, V. Tschirhart, C. MacKay, S. Frostad, R. McElroy, R. Ashley, B. McEwan","doi":"10.1144/geochem2020-029","DOIUrl":null,"url":null,"abstract":"The Patterson Lake corridor (PLC) in the southwestern margin of the Athabasca Basin hosts several high-grade uranium deposits. These deposits are located in the basement up to 900 m below the unconformity surface, raising questions about their affiliation with typical unconformity-related uranium (URU) deposits elsewhere in the basin. Based on cross-cutting relationships four pre- and three syn- to post-mineralization quartz generations were identified. Fluid inclusion analyses indicate that pre-mineralization fluids have salinities ranging from 0.2 to 27.2 wt% NaCl equiv. (avg. 9.0 wt%), whereas syn-mineralization fluids have salinities ranging from 8.8 to 33.8 wt% NaCl + CaCl2 (avg. 25.4 wt%), with NaCl- and CaCl2-rich varieties. The homogenization temperatures (Th) of fluid inclusions from pre-mineralization quartz range from 80 to 244°C (avg. 147°C), and from syn-mineralization quartz range from 64 to 248°C (avg. 128°C). Fluid boiling is indicated by the co-development of liquid-dominated and vapour-dominated fluid inclusions within individual fluid inclusion assemblages from the syn-mineralization quartz and is related to episodic fluid pressure drops caused by reactivation of basement faults. Our results indicate that composition and P–T conditions of the ore fluids in the PLC are comparable to those of typical URU deposits in the Athabasca Basin, indicating that the uranium deposits in the PLC formed under similar hydrothermal conditions. Episodic reactivation of basement faults was an important driving force to draw uraniferous fluids from the basin and reducing fluids from the basement to the mineralization sites, forming deep basement-hosted deposits. Supplementary material: Table 1, microthermometric results of type-2 and -5 fluid inclusion assembladges and isolated inclusions from the Patterson Lake corridor, and table 2, microthermometric results of type-6 fluid inclusions from the Patterson Lake corridor are available at https://doi.org/10.6084/m9.figshare.c.5510179 Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fluid evolution along the Patterson Lake corridor in the southwestern Athabasca Basin: constraints from fluid inclusions and implications for unconformity-related uranium mineralization\",\"authors\":\"M. Rabiei, G. Chi, E. Potter, V. Tschirhart, C. MacKay, S. Frostad, R. McElroy, R. Ashley, B. McEwan\",\"doi\":\"10.1144/geochem2020-029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Patterson Lake corridor (PLC) in the southwestern margin of the Athabasca Basin hosts several high-grade uranium deposits. These deposits are located in the basement up to 900 m below the unconformity surface, raising questions about their affiliation with typical unconformity-related uranium (URU) deposits elsewhere in the basin. Based on cross-cutting relationships four pre- and three syn- to post-mineralization quartz generations were identified. Fluid inclusion analyses indicate that pre-mineralization fluids have salinities ranging from 0.2 to 27.2 wt% NaCl equiv. (avg. 9.0 wt%), whereas syn-mineralization fluids have salinities ranging from 8.8 to 33.8 wt% NaCl + CaCl2 (avg. 25.4 wt%), with NaCl- and CaCl2-rich varieties. The homogenization temperatures (Th) of fluid inclusions from pre-mineralization quartz range from 80 to 244°C (avg. 147°C), and from syn-mineralization quartz range from 64 to 248°C (avg. 128°C). Fluid boiling is indicated by the co-development of liquid-dominated and vapour-dominated fluid inclusions within individual fluid inclusion assemblages from the syn-mineralization quartz and is related to episodic fluid pressure drops caused by reactivation of basement faults. Our results indicate that composition and P–T conditions of the ore fluids in the PLC are comparable to those of typical URU deposits in the Athabasca Basin, indicating that the uranium deposits in the PLC formed under similar hydrothermal conditions. Episodic reactivation of basement faults was an important driving force to draw uraniferous fluids from the basin and reducing fluids from the basement to the mineralization sites, forming deep basement-hosted deposits. Supplementary material: Table 1, microthermometric results of type-2 and -5 fluid inclusion assembladges and isolated inclusions from the Patterson Lake corridor, and table 2, microthermometric results of type-6 fluid inclusions from the Patterson Lake corridor are available at https://doi.org/10.6084/m9.figshare.c.5510179 Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways\",\"PeriodicalId\":55114,\"journal\":{\"name\":\"Geochemistry-Exploration Environment Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry-Exploration Environment Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/geochem2020-029\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2020-029","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 11

摘要

阿萨巴斯卡盆地西南边缘的帕特森湖走廊(PLC)有几个高品位铀矿床。这些矿床位于地下室,高达900 m,这引发了人们对它们与盆地其他地方典型的不整合相关铀(URU)矿床的关系的质疑。基于横切关系,确定了四个矿化前和三个矿化后石英世代。流体包裹体分析表明,矿化前流体的盐度在0.2至27.2之间 wt%NaCl当量(平均9.0 wt%),而同矿化流体的盐度范围为8.8至33.8 NaCl重量百分比 + CaCl2(平均25.4 wt%),具有富含NaCl和CaCl2的品种。矿化前石英的流体包裹体的均化温度(Th)范围为80至244°C(平均147°C),同矿化石英的流体包体的均化温度范围为64至248°C(均值128°C)。流体沸腾是由同矿化石英的单个流体包裹体组合中以液体为主和以蒸汽为主的流体包裹体共同发育而来的,并且与基底断层再活化引起的偶发性流体压降有关。我们的结果表明,PLC中矿石流体的组成和P–T条件与阿萨巴斯卡盆地典型的URU矿床相当,表明PLC中的铀矿床是在类似的热液条件下形成的。基底断层的幕式复活是从盆地中提取含铀流体和从基底向矿化点还原流体的重要驱动力,形成深基底矿床。补充材料:表1,帕特森湖走廊2型和5型流体包裹体组合和孤立包裹体的微温测量结果,以及表2,帕特森河走廊6型流体包裹物的微温测试结果可在https://doi.org/10.6084/m9.figshare.c.5510179主题收藏:本文是铀流体通道收藏的一部分,可在以下网站获取:https://www.lyellcollection.org/cc/uranium-fluid-pathways
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid evolution along the Patterson Lake corridor in the southwestern Athabasca Basin: constraints from fluid inclusions and implications for unconformity-related uranium mineralization
The Patterson Lake corridor (PLC) in the southwestern margin of the Athabasca Basin hosts several high-grade uranium deposits. These deposits are located in the basement up to 900 m below the unconformity surface, raising questions about their affiliation with typical unconformity-related uranium (URU) deposits elsewhere in the basin. Based on cross-cutting relationships four pre- and three syn- to post-mineralization quartz generations were identified. Fluid inclusion analyses indicate that pre-mineralization fluids have salinities ranging from 0.2 to 27.2 wt% NaCl equiv. (avg. 9.0 wt%), whereas syn-mineralization fluids have salinities ranging from 8.8 to 33.8 wt% NaCl + CaCl2 (avg. 25.4 wt%), with NaCl- and CaCl2-rich varieties. The homogenization temperatures (Th) of fluid inclusions from pre-mineralization quartz range from 80 to 244°C (avg. 147°C), and from syn-mineralization quartz range from 64 to 248°C (avg. 128°C). Fluid boiling is indicated by the co-development of liquid-dominated and vapour-dominated fluid inclusions within individual fluid inclusion assemblages from the syn-mineralization quartz and is related to episodic fluid pressure drops caused by reactivation of basement faults. Our results indicate that composition and P–T conditions of the ore fluids in the PLC are comparable to those of typical URU deposits in the Athabasca Basin, indicating that the uranium deposits in the PLC formed under similar hydrothermal conditions. Episodic reactivation of basement faults was an important driving force to draw uraniferous fluids from the basin and reducing fluids from the basement to the mineralization sites, forming deep basement-hosted deposits. Supplementary material: Table 1, microthermometric results of type-2 and -5 fluid inclusion assembladges and isolated inclusions from the Patterson Lake corridor, and table 2, microthermometric results of type-6 fluid inclusions from the Patterson Lake corridor are available at https://doi.org/10.6084/m9.figshare.c.5510179 Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
期刊最新文献
Multi-element geochemical analyses on ultrafine soils in Western Australia - Towards establishing abundance ranges in mineral exploration settings Alteration assemblage characterization using machine learning applied to high resolution drill-core images, hyperspectral data, and geochemistry Silver, cobalt and nickel mineralogy and geochemistry of shale ore in the sediment-hosted stratiform Nowa Sól Cu-Ag deposit, SW Poland Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach Spatial distribution, ecological risk and origin of soil heavy metals in Laoguanhe watershed of the Middle Route of China's South-to-North Water Diversion Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1