{"title":"基于可调截止波长阶跃阻抗谐振器的高度小型化纳米等离子体滤波器","authors":"Seyed Morteza Ebadi, Shiva Khani","doi":"10.1007/s11468-023-01878-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design and numerical investigation of tunable, ultra-compact, and highly-efficient plasmonic filters based on stepped impedance resonators (SIRs). The proposed devices are realized in metal–insulator-metal (MIM) plasmonic waveguide systems and exhibit more degrees of freedom and high flexibility to design resonator-based devices, thanks to the SIRs. The principle of conventional SIRs is discussed in terms of equivalent circuit model and characteristic impedance. Among the three proposed plasmonic filters, one of them acts as a short-wavelength, while the other two nanostructures work as long-wavelength cut-off filters at near-infrared region (NIR) and telecom wavelengths. Simulation results are carried out by a finite element method (FEM)-based solver and indicate that the cut-off wavelengths of the proposed resonators found to be at 1187?nm, 1265?nm, and 999?nm, respectively, can be easily tuned by modulating their structural parameters. In addition to the mentioned remarkable properties of the designed structures including the size which are found to be 500?nm?×?310?nm, 350?nm?×?285?nm, and 210?nm?×?195?nm, respectively, the simple structures of the proposed topologies facilitate their fabrication process. Therefore, the suggested devices can contribute to the development of miniaturized, tunable, and efficient optical components for photonic integrated circuits (PICs) applications and in optical wireless communication systems.\n</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 4","pages":"1607 - 1618"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11468-023-01878-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly-Miniaturized Nano-Plasmonic Filters Based on Stepped Impedance Resonators with Tunable Cut-Off Wavelengths\",\"authors\":\"Seyed Morteza Ebadi, Shiva Khani\",\"doi\":\"10.1007/s11468-023-01878-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the design and numerical investigation of tunable, ultra-compact, and highly-efficient plasmonic filters based on stepped impedance resonators (SIRs). The proposed devices are realized in metal–insulator-metal (MIM) plasmonic waveguide systems and exhibit more degrees of freedom and high flexibility to design resonator-based devices, thanks to the SIRs. The principle of conventional SIRs is discussed in terms of equivalent circuit model and characteristic impedance. Among the three proposed plasmonic filters, one of them acts as a short-wavelength, while the other two nanostructures work as long-wavelength cut-off filters at near-infrared region (NIR) and telecom wavelengths. Simulation results are carried out by a finite element method (FEM)-based solver and indicate that the cut-off wavelengths of the proposed resonators found to be at 1187?nm, 1265?nm, and 999?nm, respectively, can be easily tuned by modulating their structural parameters. In addition to the mentioned remarkable properties of the designed structures including the size which are found to be 500?nm?×?310?nm, 350?nm?×?285?nm, and 210?nm?×?195?nm, respectively, the simple structures of the proposed topologies facilitate their fabrication process. Therefore, the suggested devices can contribute to the development of miniaturized, tunable, and efficient optical components for photonic integrated circuits (PICs) applications and in optical wireless communication systems.\\n</p></div>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"18 4\",\"pages\":\"1607 - 1618\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11468-023-01878-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11468-023-01878-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01878-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly-Miniaturized Nano-Plasmonic Filters Based on Stepped Impedance Resonators with Tunable Cut-Off Wavelengths
This paper presents the design and numerical investigation of tunable, ultra-compact, and highly-efficient plasmonic filters based on stepped impedance resonators (SIRs). The proposed devices are realized in metal–insulator-metal (MIM) plasmonic waveguide systems and exhibit more degrees of freedom and high flexibility to design resonator-based devices, thanks to the SIRs. The principle of conventional SIRs is discussed in terms of equivalent circuit model and characteristic impedance. Among the three proposed plasmonic filters, one of them acts as a short-wavelength, while the other two nanostructures work as long-wavelength cut-off filters at near-infrared region (NIR) and telecom wavelengths. Simulation results are carried out by a finite element method (FEM)-based solver and indicate that the cut-off wavelengths of the proposed resonators found to be at 1187?nm, 1265?nm, and 999?nm, respectively, can be easily tuned by modulating their structural parameters. In addition to the mentioned remarkable properties of the designed structures including the size which are found to be 500?nm?×?310?nm, 350?nm?×?285?nm, and 210?nm?×?195?nm, respectively, the simple structures of the proposed topologies facilitate their fabrication process. Therefore, the suggested devices can contribute to the development of miniaturized, tunable, and efficient optical components for photonic integrated circuits (PICs) applications and in optical wireless communication systems.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.