{"title":"一种考虑生态因素的预测性多目标状态维修策略","authors":"Ronghua Cai, Jiamei Yang, Xuemin Xu, Aiping Jiang","doi":"10.1108/jqme-02-2022-0010","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.Design/methodology/approachBased on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.FindingsAn increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.Practical implicationsIn reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.Originality/valuePrevious research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive multi-objective condition-based maintenance (CBM) policy considering ecological factors\",\"authors\":\"Ronghua Cai, Jiamei Yang, Xuemin Xu, Aiping Jiang\",\"doi\":\"10.1108/jqme-02-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.Design/methodology/approachBased on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.FindingsAn increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.Practical implicationsIn reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.Originality/valuePrevious research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jqme-02-2022-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-02-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A predictive multi-objective condition-based maintenance (CBM) policy considering ecological factors
PurposeThe purpose of this paper is to propose an improved multi-objective optimization model for the condition-based maintenance (CBM) of single-component systems which considers periodic imperfect maintenance and ecological factors.Design/methodology/approachBased on the application of non-periodic preventive CBM, two recursion models are built for the system: hazard rate and the environmental degradation factor. This paper also established an optimal multi-objective model with a normalization process. The multiple-attribute value theory is used to obtain the optimal preventive maintenance (PM) interval. The simulation and sensitivity analyses are applied to obtain further rules.FindingsAn increase in the number of the occurrences could shorten the duration of a maintenance cycle. The maintenance techniques and maintenance efficiency could be improved by increasing system availability, reducing cost rate and improving degraded condition.Practical implicationsIn reality, a variety of environmental situations may occur subsequent to the operations of an advanced manufacturing system. This model could be applied in real cases to help the manufacturers better discover the optimal maintenance cycle with minimized cost and degraded condition of the environment, helping the corporations better fulfill their CSR as well.Originality/valuePrevious research on single-component condition-based predictive maintenance usually focused on the maintenance costs and availability of a system, while ignoring the possible pollution from system operations. This paper proposed a modified multi-objective optimization model considering environment influence which could more comprehensively analyze the factors affecting PM interval.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance