基于生命体征的支持向量机(SVM)预测重症监护病房(ICU)脓毒症

Q3 Computer Science Open Bioinformatics Journal Pub Date : 2021-11-19 DOI:10.2174/18750362021140100108
Zeina Rayan, Marco Alfonse, Abdel-badeeh M. Salem
{"title":"基于生命体征的支持向量机(SVM)预测重症监护病房(ICU)脓毒症","authors":"Zeina Rayan, Marco Alfonse, Abdel-badeeh M. Salem","doi":"10.2174/18750362021140100108","DOIUrl":null,"url":null,"abstract":"\n \n As sepsis is one of the life-threatening diseases, predicting sepsis with high accuracy could help save lives.\n \n \n \n Efficiency and accuracy of predicting sepsis can be enhanced through optimal feature selection. In this work, a support vector machine model is proposed to automatically predict a patient’s risk of sepsis based on physiological data collected from the ICU.\n \n \n \n The support vector machine algorithm that uses the extracted features has a great impact on sepsis prediction, which yields the accuracy of 0.73.\n \n \n \n Predicting sepsis can be accurately performed using the main vital signs and support vector machine.\n","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Sepsis in the Intensive Care Unit (ICU) through Vital Signs using Support Vector Machine (SVM)\",\"authors\":\"Zeina Rayan, Marco Alfonse, Abdel-badeeh M. Salem\",\"doi\":\"10.2174/18750362021140100108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n As sepsis is one of the life-threatening diseases, predicting sepsis with high accuracy could help save lives.\\n \\n \\n \\n Efficiency and accuracy of predicting sepsis can be enhanced through optimal feature selection. In this work, a support vector machine model is proposed to automatically predict a patient’s risk of sepsis based on physiological data collected from the ICU.\\n \\n \\n \\n The support vector machine algorithm that uses the extracted features has a great impact on sepsis prediction, which yields the accuracy of 0.73.\\n \\n \\n \\n Predicting sepsis can be accurately performed using the main vital signs and support vector machine.\\n\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/18750362021140100108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/18750362021140100108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

由于败血症是一种危及生命的疾病,高精度预测败血症有助于挽救生命。通过优化特征选择可以提高预测败血症的效率和准确性。在这项工作中,基于从ICU收集的生理数据,提出了一种支持向量机模型来自动预测患者患败血症的风险。使用提取特征的支持向量机算法对败血症预测有很大影响,其准确率为0.73。使用主要生命体征和支持向量机可以准确预测败血症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Sepsis in the Intensive Care Unit (ICU) through Vital Signs using Support Vector Machine (SVM)
As sepsis is one of the life-threatening diseases, predicting sepsis with high accuracy could help save lives. Efficiency and accuracy of predicting sepsis can be enhanced through optimal feature selection. In this work, a support vector machine model is proposed to automatically predict a patient’s risk of sepsis based on physiological data collected from the ICU. The support vector machine algorithm that uses the extracted features has a great impact on sepsis prediction, which yields the accuracy of 0.73. Predicting sepsis can be accurately performed using the main vital signs and support vector machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Bioinformatics Journal
Open Bioinformatics Journal Computer Science-Computer Science (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊介绍: The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.
期刊最新文献
Decision-making Support System for Predicting and Eliminating Malnutrition and Anemia Immunoinformatics Approach for the Design of Chimeric Vaccine Against Whitmore Disease A New Deep Learning Model based on Neuroimaging for Predicting Alzheimer's Disease Early Prediction of Covid-19 Samples from Chest X-ray Images using Deep Learning Approach Electronic Health Record (EHR) System Development for Study on EHR Data-based Early Prediction of Diabetes Using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1