重新审视生物通气:移动LNAPL增强生物降解位点的功效

IF 1.3 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Quarterly Journal of Engineering Geology and Hydrogeology Pub Date : 2023-02-20 DOI:10.1144/qjegh2022-085
Jonathon J. Smith, Steven T. Gaito, B. Koons
{"title":"重新审视生物通气:移动LNAPL增强生物降解位点的功效","authors":"Jonathon J. Smith, Steven T. Gaito, B. Koons","doi":"10.1144/qjegh2022-085","DOIUrl":null,"url":null,"abstract":"Bioventing is a remediation technology that enhances aerobic biodegradation of petroleum-affected soil in the vadose zone by introducing oxygen to the subsurface. Bioventing was historically considered effective for decreasing petroleum hydrocarbons concentrations in soil but discounted for sites where mobile light non-aqueous phase liquid (LNAPL) accumulated in wells. While the science behind bioventing has not changed, the conceptual understanding of LNAPL depletion processes and framework for evaluating the efficacy of LNAPL remediation technologies has changed markedly since the 1990s. This shift leads to a new perspective on the utility and effectiveness of bioventing compared to other LNAPL remedial alternatives.\n A case study is used to illustrate that mass depletion by bioventing often outperforms hydraulic recovery over time. Biodegradation processes enhanced by bioventing deplete LNAPL constituents in mobile and residual LNAPL in the LNAPL smear zone, which means that bioventing can address a larger mass of LNAPL and may induce a beneficial composition change. Hydraulic LNAPL recovery technologies only access the mobile LNAPL and do not induce a composition change. Furthermore, for low LNAPL recoverability (transmissivity), bioventing typically uses less energy and produces less waste per unit mass of hydrocarbon removed than hydraulic recovery, making bioventing a more sustainable remedial technology.","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioventing revisited: efficacy of enhanced biodegradation for sites with mobile LNAPL\",\"authors\":\"Jonathon J. Smith, Steven T. Gaito, B. Koons\",\"doi\":\"10.1144/qjegh2022-085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioventing is a remediation technology that enhances aerobic biodegradation of petroleum-affected soil in the vadose zone by introducing oxygen to the subsurface. Bioventing was historically considered effective for decreasing petroleum hydrocarbons concentrations in soil but discounted for sites where mobile light non-aqueous phase liquid (LNAPL) accumulated in wells. While the science behind bioventing has not changed, the conceptual understanding of LNAPL depletion processes and framework for evaluating the efficacy of LNAPL remediation technologies has changed markedly since the 1990s. This shift leads to a new perspective on the utility and effectiveness of bioventing compared to other LNAPL remedial alternatives.\\n A case study is used to illustrate that mass depletion by bioventing often outperforms hydraulic recovery over time. Biodegradation processes enhanced by bioventing deplete LNAPL constituents in mobile and residual LNAPL in the LNAPL smear zone, which means that bioventing can address a larger mass of LNAPL and may induce a beneficial composition change. Hydraulic LNAPL recovery technologies only access the mobile LNAPL and do not induce a composition change. Furthermore, for low LNAPL recoverability (transmissivity), bioventing typically uses less energy and produces less waste per unit mass of hydrocarbon removed than hydraulic recovery, making bioventing a more sustainable remedial technology.\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2022-085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2022-085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物通气是一种通过向地下引入氧气来增强包气带受石油影响土壤的好氧生物降解的修复技术。生物通气历来被认为是降低土壤中石油碳氢化合物浓度的有效方法,但对于流动轻质非水相液体(LNAPL)在井中积聚的地点则不适用。虽然生物通气背后的科学没有改变,但自20世纪90年代以来,对LNAPL耗竭过程的概念理解和评估LNAPL修复技术功效的框架发生了显著变化。与其他LNAPL治疗替代品相比,这种转变为生物通气的实用性和有效性带来了新的视角。一个案例研究表明,随着时间的推移,生物通气的质量消耗通常优于水力回收。生物通气增强的生物降解过程会耗尽LNAPL涂抹区中流动和残留LNAPL中的LNAPL成分,这意味着生物通气可以处理更大质量的LNAPL,并可能引起有益的成分变化。液压式LNAPL回收技术只能使用移动式LNAPL,不会引起成分变化。此外,对于低LNAPL可回收性(透射率),与水力回收相比,生物通气通常消耗更少的能量,每单位质量去除的碳氢化合物产生更少的废物,这使得生物通气成为一种更可持续的补救技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioventing revisited: efficacy of enhanced biodegradation for sites with mobile LNAPL
Bioventing is a remediation technology that enhances aerobic biodegradation of petroleum-affected soil in the vadose zone by introducing oxygen to the subsurface. Bioventing was historically considered effective for decreasing petroleum hydrocarbons concentrations in soil but discounted for sites where mobile light non-aqueous phase liquid (LNAPL) accumulated in wells. While the science behind bioventing has not changed, the conceptual understanding of LNAPL depletion processes and framework for evaluating the efficacy of LNAPL remediation technologies has changed markedly since the 1990s. This shift leads to a new perspective on the utility and effectiveness of bioventing compared to other LNAPL remedial alternatives. A case study is used to illustrate that mass depletion by bioventing often outperforms hydraulic recovery over time. Biodegradation processes enhanced by bioventing deplete LNAPL constituents in mobile and residual LNAPL in the LNAPL smear zone, which means that bioventing can address a larger mass of LNAPL and may induce a beneficial composition change. Hydraulic LNAPL recovery technologies only access the mobile LNAPL and do not induce a composition change. Furthermore, for low LNAPL recoverability (transmissivity), bioventing typically uses less energy and produces less waste per unit mass of hydrocarbon removed than hydraulic recovery, making bioventing a more sustainable remedial technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
66
审稿时长
6 months
期刊介绍: Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House. Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards. The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.
期刊最新文献
Degradation and protection of cut slopes in weathered gneiss; a 40-year case study Development of a drought-resilient water supply from dolomitized limestones of the Irish Midlands Understanding the Behavior of Seismically Derived Poisson's Ratio in Near Surface Characterization Jet grouting to new depths in the Lambeth Group and Thanet Formation beneath London Size Effect of Anisotropy in Rocks Spatial Variability: Evaluating through Digital Drilling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1