{"title":"面向基于业务流程推荐的协同过滤","authors":"Wei Luo, Zhihao Peng, Ansheng Deng, X. Bi","doi":"10.1504/ijims.2019.10025545","DOIUrl":null,"url":null,"abstract":"Existing process recommendation methods cannot meet the various needs of personalised users. To address this problem, this paper proposed a personalised process recommendation method that is based on user behaviour preference. This method combines traditional process recommendation with user behaviour similarity and mines user behaviour preference according to the historical tracks of processes that were performed by users. In the execution of a process, the execution trace of a behaviour-similar user and executable candidate activities to be recommended that are provided by conventional process recommendation are analysed. Then, activities or recommended activities for the current user are selected to realise the automatic construction of the entire process to meet the personalised needs of users. The experimental results show that the proposed method outperforms other methods in terms of accuracy and efficiency.","PeriodicalId":39293,"journal":{"name":"International Journal of Internet Manufacturing and Services","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward business process recommendation-based collaborative filtering\",\"authors\":\"Wei Luo, Zhihao Peng, Ansheng Deng, X. Bi\",\"doi\":\"10.1504/ijims.2019.10025545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing process recommendation methods cannot meet the various needs of personalised users. To address this problem, this paper proposed a personalised process recommendation method that is based on user behaviour preference. This method combines traditional process recommendation with user behaviour similarity and mines user behaviour preference according to the historical tracks of processes that were performed by users. In the execution of a process, the execution trace of a behaviour-similar user and executable candidate activities to be recommended that are provided by conventional process recommendation are analysed. Then, activities or recommended activities for the current user are selected to realise the automatic construction of the entire process to meet the personalised needs of users. The experimental results show that the proposed method outperforms other methods in terms of accuracy and efficiency.\",\"PeriodicalId\":39293,\"journal\":{\"name\":\"International Journal of Internet Manufacturing and Services\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Internet Manufacturing and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijims.2019.10025545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Manufacturing and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijims.2019.10025545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Toward business process recommendation-based collaborative filtering
Existing process recommendation methods cannot meet the various needs of personalised users. To address this problem, this paper proposed a personalised process recommendation method that is based on user behaviour preference. This method combines traditional process recommendation with user behaviour similarity and mines user behaviour preference according to the historical tracks of processes that were performed by users. In the execution of a process, the execution trace of a behaviour-similar user and executable candidate activities to be recommended that are provided by conventional process recommendation are analysed. Then, activities or recommended activities for the current user are selected to realise the automatic construction of the entire process to meet the personalised needs of users. The experimental results show that the proposed method outperforms other methods in terms of accuracy and efficiency.