孤立股动脉模型中壁剪切应力改变引起的炎症性单核细胞反应

Aparna A. Kadam, R. Gersch, T. Rosengart, M. Frame
{"title":"孤立股动脉模型中壁剪切应力改变引起的炎症性单核细胞反应","authors":"Aparna A. Kadam, R. Gersch, T. Rosengart, M. Frame","doi":"10.14440/jbm.2019.274","DOIUrl":null,"url":null,"abstract":"Arteriogenesis (collateral formation) is accompanied by a pro-inflammatory state that may be related to the wall shear stress (WSS) within the neo-collateral vessels. Examining the pro-inflammatory component in situ or in vivo is complex. In an ex vivo mouse femoral artery perfusion model, we examined the effect of wall shear stress on pro-arteriogenic inflammatory markers and monocyte adhesion. In a femoral artery model with defined pulsatile flow, WSS was controlled (at physiological stress, 1.4×, and 2× physiological stress) during a 24 h perfusion before gene expression levels and monocyte adhesion were assessed. Significant upregulation of expression was found for the cytokine TNFα, adhesion molecule ICAM-1, growth factor TGFβ, and the transcription factor Egr-1 at varying levels of increased WSS compared to physiological control. Further, trends toward upregulation were found for FGF-2, the cytokine MCP-1 and adhesion molecules VCAM-1 and P-selectin with increased WSS. Finally, monocytes adhesion increased in response to increased WSS. We have developed a murine femoral artery model for studying changes in WSS ex vivo and show that the artery responds by upregulating inflammatory cytokines, adhesion molecules and growth factors consistent with previous in vivo findings.","PeriodicalId":73618,"journal":{"name":"Journal of biological methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Inflammatory monocyte response due to altered wall shear stress in an isolated femoral artery model\",\"authors\":\"Aparna A. Kadam, R. Gersch, T. Rosengart, M. Frame\",\"doi\":\"10.14440/jbm.2019.274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arteriogenesis (collateral formation) is accompanied by a pro-inflammatory state that may be related to the wall shear stress (WSS) within the neo-collateral vessels. Examining the pro-inflammatory component in situ or in vivo is complex. In an ex vivo mouse femoral artery perfusion model, we examined the effect of wall shear stress on pro-arteriogenic inflammatory markers and monocyte adhesion. In a femoral artery model with defined pulsatile flow, WSS was controlled (at physiological stress, 1.4×, and 2× physiological stress) during a 24 h perfusion before gene expression levels and monocyte adhesion were assessed. Significant upregulation of expression was found for the cytokine TNFα, adhesion molecule ICAM-1, growth factor TGFβ, and the transcription factor Egr-1 at varying levels of increased WSS compared to physiological control. Further, trends toward upregulation were found for FGF-2, the cytokine MCP-1 and adhesion molecules VCAM-1 and P-selectin with increased WSS. Finally, monocytes adhesion increased in response to increased WSS. We have developed a murine femoral artery model for studying changes in WSS ex vivo and show that the artery responds by upregulating inflammatory cytokines, adhesion molecules and growth factors consistent with previous in vivo findings.\",\"PeriodicalId\":73618,\"journal\":{\"name\":\"Journal of biological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14440/jbm.2019.274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14440/jbm.2019.274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

动脉生成(侧支形成)伴随着促炎状态,这可能与新侧支血管内的壁剪切应力(WSS)有关。原位或体内检测促炎成分是复杂的。在离体小鼠股动脉灌注模型中,我们检测了壁剪切应力对促动脉生成炎症标志物和单核细胞粘附的影响。在具有明确脉搏血流的股动脉模型中,在24小时灌注期间控制WSS(在生理应激下,1.4倍和2倍生理应激下),然后评估基因表达水平和单核细胞粘附。与生理对照组相比,WSS升高的不同水平下,细胞因子TNFα、粘附分子ICAM-1、生长因子TGFβ和转录因子Egr-1的表达均显著上调。此外,随着WSS的增加,FGF-2、细胞因子MCP-1、粘附分子VCAM-1和p -选择素也有上调的趋势。最后,单核细胞粘附随着WSS的增加而增加。我们建立了小鼠股动脉模型来研究体外WSS的变化,并表明动脉通过上调炎症细胞因子、粘附分子和生长因子来响应,这与之前在体内的研究结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inflammatory monocyte response due to altered wall shear stress in an isolated femoral artery model
Arteriogenesis (collateral formation) is accompanied by a pro-inflammatory state that may be related to the wall shear stress (WSS) within the neo-collateral vessels. Examining the pro-inflammatory component in situ or in vivo is complex. In an ex vivo mouse femoral artery perfusion model, we examined the effect of wall shear stress on pro-arteriogenic inflammatory markers and monocyte adhesion. In a femoral artery model with defined pulsatile flow, WSS was controlled (at physiological stress, 1.4×, and 2× physiological stress) during a 24 h perfusion before gene expression levels and monocyte adhesion were assessed. Significant upregulation of expression was found for the cytokine TNFα, adhesion molecule ICAM-1, growth factor TGFβ, and the transcription factor Egr-1 at varying levels of increased WSS compared to physiological control. Further, trends toward upregulation were found for FGF-2, the cytokine MCP-1 and adhesion molecules VCAM-1 and P-selectin with increased WSS. Finally, monocytes adhesion increased in response to increased WSS. We have developed a murine femoral artery model for studying changes in WSS ex vivo and show that the artery responds by upregulating inflammatory cytokines, adhesion molecules and growth factors consistent with previous in vivo findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study. Combined T1-weighted MRI and diffusion MRI tractography of paraventricular, locus coeruleus, and dorsal vagal complex connectivity in brainstem-hypothalamic nuclei. Hematological parameters of the European hake (Merluccius merluccius) in Toroneos Gulf, northern Greece: A case study. Advanced UltraTech approach for distinguishing granulomatous from non-granulomatous corneal endothelial exudates in autoimmune rheumatic anterior uveitis. Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians and guidelines for estimating human lethal dose range.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1