{"title":"你一切正常吗?视情况而定!","authors":"Wanfang Chen, Marc G. Genton","doi":"10.1111/insr.12512","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The assumption of normality has underlain much of the development of statistics, including spatial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on the skewness and kurtosis approaches. We show through simulation studies that some of these tests cannot be used directly for testing normality of spatial data. We further review briefly the few existing univariate tests under dependence (time or space), and then propose a new multivariate normality test for spatial data by accounting for the spatial dependence. The new test utilises the union-intersection principle to decompose the null hypothesis into intersections of univariate normality hypotheses for projection data, and it rejects the multivariate normality if any individual hypothesis is rejected. The individual hypotheses for univariate normality are conducted using a Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show in simulation studies that the new test has a good control of the type I error and a high empirical power, especially for large sample sizes. We further illustrate our test on bivariate wind data over the Arabian Peninsula.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Are You All Normal? It Depends!\",\"authors\":\"Wanfang Chen, Marc G. Genton\",\"doi\":\"10.1111/insr.12512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The assumption of normality has underlain much of the development of statistics, including spatial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on the skewness and kurtosis approaches. We show through simulation studies that some of these tests cannot be used directly for testing normality of spatial data. We further review briefly the few existing univariate tests under dependence (time or space), and then propose a new multivariate normality test for spatial data by accounting for the spatial dependence. The new test utilises the union-intersection principle to decompose the null hypothesis into intersections of univariate normality hypotheses for projection data, and it rejects the multivariate normality if any individual hypothesis is rejected. The individual hypotheses for univariate normality are conducted using a Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show in simulation studies that the new test has a good control of the type I error and a high empirical power, especially for large sample sizes. We further illustrate our test on bivariate wind data over the Arabian Peninsula.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12512\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The assumption of normality has underlain much of the development of statistics, including spatial statistics, and many tests have been proposed. In this work, we focus on the multivariate setting and first review the recent advances in multivariate normality tests for i.i.d. data, with emphasis on the skewness and kurtosis approaches. We show through simulation studies that some of these tests cannot be used directly for testing normality of spatial data. We further review briefly the few existing univariate tests under dependence (time or space), and then propose a new multivariate normality test for spatial data by accounting for the spatial dependence. The new test utilises the union-intersection principle to decompose the null hypothesis into intersections of univariate normality hypotheses for projection data, and it rejects the multivariate normality if any individual hypothesis is rejected. The individual hypotheses for univariate normality are conducted using a Jarque–Bera type test statistic that accounts for the spatial dependence in the data. We also show in simulation studies that the new test has a good control of the type I error and a high empirical power, especially for large sample sizes. We further illustrate our test on bivariate wind data over the Arabian Peninsula.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.