E. F. de Castro, G. Nima, F. Rueggeberg, M. Giannini
{"title":"临时修复3d打印树脂的精度、弯曲模量、弯曲强度和显微硬度对构建方向的影响","authors":"E. F. de Castro, G. Nima, F. Rueggeberg, M. Giannini","doi":"10.2139/ssrn.4153617","DOIUrl":null,"url":null,"abstract":"PURPOSE\nThis study evaluated the effects of 3D-printing build orientation on accuracy, flexural modulus (FM), flexural strength (FS), and microhardness of selected, commercial 3D-printed provisional resins (3DRs).\n\n\nMATERIAL AND METHODS\nPMMA CAD/CAM provisional material (Vita Temp/Vita) served as Control. Four 3DRs (Cosmos-SLA/Yller, Cosmos-DLP/Yller, PriZma-Bioprov/Makertech, Nanolab/Wilcos) were used in three printing orientations (0°, 45°, and 90°). Printed samples were cleaned with isopropyl alcohol prior to post-curing in specific post-curing units. For each group, 20 bar-shaped samples (25 × 2x2 mm) and ten disc-shaped samples (15-mm diameter, 2.5-mm thick) were obtained. The dimensions of bar samples were measured and the mean percent errors were compared to the reference (digital) values to obtain \"accuracy\" (n = 20). Samples were then aged in distilled water at 37 °C and half were submitted to a three-point bend test in a universal testing machine after 24 h and the other half after 1 year (n = 10). Disc samples were polished prior to microhardness evaluation (n = 10). Microstructure and elemental composition of filler particles in the 3DRs were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) (n = 3). Accuracy and microhardness were submitted to two way-, and FM and FS to three way-ANOVA, followed by Tukey's tests. Results of experimental groups were compared to a milled PMMA Control using Dunnett's tests, and Student's t-tests compared FM and FS to Control at different aging periods (α = 0.05).\n\n\nRESULTS\nExcept for Cosmos-DLP, the 90° orientation demonstrated the best overall accuracy in all dimensions evaluated. The overall accuracy of Cosmos-SLA was not significantly different from Control and higher than other 3DRs. The FM of all 3DRs was lower than Control, regardless of orientation and aging period. After 1 year of aging, FS of 45°-Cosmos-SLA and all orientations of PriZma were not different from Control, while 90°-Cosmos-SLA was higher. Build orientation had no influence on microhardness of the 3DRs: Nanolab was the only resin harder than Control. Very few nanometric spherical filler particles were found in Cosmos-SLA, Cosmos-DLP, and PriZma, while Nanolab presented higher number of particles having irregular shapes and sizes.\n\n\nCONCLUSIONS\nIn general, although build orientation did not influence microhardness results, the 90° -orientation resulted in the best overall accuracy for most 3DRs. After 1-year water storage, Cosmos-SLA printed vertically showed the highest FS, while the PMMA Control obtained the highest FM for both aging periods.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"136 1","pages":"105479"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations.\",\"authors\":\"E. F. de Castro, G. Nima, F. Rueggeberg, M. Giannini\",\"doi\":\"10.2139/ssrn.4153617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE\\nThis study evaluated the effects of 3D-printing build orientation on accuracy, flexural modulus (FM), flexural strength (FS), and microhardness of selected, commercial 3D-printed provisional resins (3DRs).\\n\\n\\nMATERIAL AND METHODS\\nPMMA CAD/CAM provisional material (Vita Temp/Vita) served as Control. Four 3DRs (Cosmos-SLA/Yller, Cosmos-DLP/Yller, PriZma-Bioprov/Makertech, Nanolab/Wilcos) were used in three printing orientations (0°, 45°, and 90°). Printed samples were cleaned with isopropyl alcohol prior to post-curing in specific post-curing units. For each group, 20 bar-shaped samples (25 × 2x2 mm) and ten disc-shaped samples (15-mm diameter, 2.5-mm thick) were obtained. The dimensions of bar samples were measured and the mean percent errors were compared to the reference (digital) values to obtain \\\"accuracy\\\" (n = 20). Samples were then aged in distilled water at 37 °C and half were submitted to a three-point bend test in a universal testing machine after 24 h and the other half after 1 year (n = 10). Disc samples were polished prior to microhardness evaluation (n = 10). Microstructure and elemental composition of filler particles in the 3DRs were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) (n = 3). Accuracy and microhardness were submitted to two way-, and FM and FS to three way-ANOVA, followed by Tukey's tests. Results of experimental groups were compared to a milled PMMA Control using Dunnett's tests, and Student's t-tests compared FM and FS to Control at different aging periods (α = 0.05).\\n\\n\\nRESULTS\\nExcept for Cosmos-DLP, the 90° orientation demonstrated the best overall accuracy in all dimensions evaluated. The overall accuracy of Cosmos-SLA was not significantly different from Control and higher than other 3DRs. The FM of all 3DRs was lower than Control, regardless of orientation and aging period. After 1 year of aging, FS of 45°-Cosmos-SLA and all orientations of PriZma were not different from Control, while 90°-Cosmos-SLA was higher. Build orientation had no influence on microhardness of the 3DRs: Nanolab was the only resin harder than Control. Very few nanometric spherical filler particles were found in Cosmos-SLA, Cosmos-DLP, and PriZma, while Nanolab presented higher number of particles having irregular shapes and sizes.\\n\\n\\nCONCLUSIONS\\nIn general, although build orientation did not influence microhardness results, the 90° -orientation resulted in the best overall accuracy for most 3DRs. After 1-year water storage, Cosmos-SLA printed vertically showed the highest FS, while the PMMA Control obtained the highest FM for both aging periods.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"136 1\",\"pages\":\"105479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4153617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4153617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations.
PURPOSE
This study evaluated the effects of 3D-printing build orientation on accuracy, flexural modulus (FM), flexural strength (FS), and microhardness of selected, commercial 3D-printed provisional resins (3DRs).
MATERIAL AND METHODS
PMMA CAD/CAM provisional material (Vita Temp/Vita) served as Control. Four 3DRs (Cosmos-SLA/Yller, Cosmos-DLP/Yller, PriZma-Bioprov/Makertech, Nanolab/Wilcos) were used in three printing orientations (0°, 45°, and 90°). Printed samples were cleaned with isopropyl alcohol prior to post-curing in specific post-curing units. For each group, 20 bar-shaped samples (25 × 2x2 mm) and ten disc-shaped samples (15-mm diameter, 2.5-mm thick) were obtained. The dimensions of bar samples were measured and the mean percent errors were compared to the reference (digital) values to obtain "accuracy" (n = 20). Samples were then aged in distilled water at 37 °C and half were submitted to a three-point bend test in a universal testing machine after 24 h and the other half after 1 year (n = 10). Disc samples were polished prior to microhardness evaluation (n = 10). Microstructure and elemental composition of filler particles in the 3DRs were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) (n = 3). Accuracy and microhardness were submitted to two way-, and FM and FS to three way-ANOVA, followed by Tukey's tests. Results of experimental groups were compared to a milled PMMA Control using Dunnett's tests, and Student's t-tests compared FM and FS to Control at different aging periods (α = 0.05).
RESULTS
Except for Cosmos-DLP, the 90° orientation demonstrated the best overall accuracy in all dimensions evaluated. The overall accuracy of Cosmos-SLA was not significantly different from Control and higher than other 3DRs. The FM of all 3DRs was lower than Control, regardless of orientation and aging period. After 1 year of aging, FS of 45°-Cosmos-SLA and all orientations of PriZma were not different from Control, while 90°-Cosmos-SLA was higher. Build orientation had no influence on microhardness of the 3DRs: Nanolab was the only resin harder than Control. Very few nanometric spherical filler particles were found in Cosmos-SLA, Cosmos-DLP, and PriZma, while Nanolab presented higher number of particles having irregular shapes and sizes.
CONCLUSIONS
In general, although build orientation did not influence microhardness results, the 90° -orientation resulted in the best overall accuracy for most 3DRs. After 1-year water storage, Cosmos-SLA printed vertically showed the highest FS, while the PMMA Control obtained the highest FM for both aging periods.