基于粒子群优化的极限学习机算法在铁矿石品位估计中的应用

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-04-01 DOI:10.22044/JME.2021.10368.1984
M. Fathi, A. Alimoradi, H. R. H. Ahooi
{"title":"基于粒子群优化的极限学习机算法在铁矿石品位估计中的应用","authors":"M. Fathi, A. Alimoradi, H. R. H. Ahooi","doi":"10.22044/JME.2021.10368.1984","DOIUrl":null,"url":null,"abstract":"Scientific uncertainties make the grade estimation very complicated and important in the metallic ore deposits. This paper introduces a new hybrid method for estimating the iron ore grade using a combination of two artificial intelligence methods; it is based on the single layer-extreme learning machine and the particle swarm optimization approaches, and is designed based on the location of the boreholes, depth of the boreholes, and drill hole information from an orebody, and applied for the ore grade estimation on the basis of a block model. In this work, the two algorithms of optimization clustering and neural networks are used for the iron grade estimation in the Choghart iron ore north anomaly in the central Iran. The results of the training and testing the algorithms indicate a significant ability of the optimized neural network system in the ore grade estimation.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade\",\"authors\":\"M. Fathi, A. Alimoradi, H. R. H. Ahooi\",\"doi\":\"10.22044/JME.2021.10368.1984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific uncertainties make the grade estimation very complicated and important in the metallic ore deposits. This paper introduces a new hybrid method for estimating the iron ore grade using a combination of two artificial intelligence methods; it is based on the single layer-extreme learning machine and the particle swarm optimization approaches, and is designed based on the location of the boreholes, depth of the boreholes, and drill hole information from an orebody, and applied for the ore grade estimation on the basis of a block model. In this work, the two algorithms of optimization clustering and neural networks are used for the iron grade estimation in the Choghart iron ore north anomaly in the central Iran. The results of the training and testing the algorithms indicate a significant ability of the optimized neural network system in the ore grade estimation.\",\"PeriodicalId\":45259,\"journal\":{\"name\":\"Journal of Mining and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JME.2021.10368.1984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10368.1984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 3

摘要

科学的不确定性使金属矿床的品位估算变得非常复杂和重要。本文介绍了一种新的混合方法,将两种人工智能方法相结合来估计铁矿石品位;它基于单层极限学习机和粒子群优化方法,根据矿体的钻孔位置、钻孔深度和钻孔信息进行设计,并应用于基于块体模型的矿石品位估计。本文将优化聚类和神经网络两种算法用于伊朗中部Choghart铁矿北异常的铁品位估计。训练和测试算法的结果表明,优化的神经网络系统在矿石品位估计方面具有显著的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade
Scientific uncertainties make the grade estimation very complicated and important in the metallic ore deposits. This paper introduces a new hybrid method for estimating the iron ore grade using a combination of two artificial intelligence methods; it is based on the single layer-extreme learning machine and the particle swarm optimization approaches, and is designed based on the location of the boreholes, depth of the boreholes, and drill hole information from an orebody, and applied for the ore grade estimation on the basis of a block model. In this work, the two algorithms of optimization clustering and neural networks are used for the iron grade estimation in the Choghart iron ore north anomaly in the central Iran. The results of the training and testing the algorithms indicate a significant ability of the optimized neural network system in the ore grade estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1