里海风致流的数值模拟

Jalal Mofidi, A. R. E. Hesari
{"title":"里海风致流的数值模拟","authors":"Jalal Mofidi, A. R. E. Hesari","doi":"10.29252/IJCOE.2.1.67","DOIUrl":null,"url":null,"abstract":"Article History: Received: 14 May 2018 Accepted: 13 Jun. 2018 A three-dimensional primitive equation model has been developed to study wind-driven currents in the Caspian Sea (CS). The equations were solved in the spherical coordinate system with a vertical array of pressure-sigma using a finite difference Method on a staggered modified Arakawa c grid. Simulations showed that there is an anticyclonic eddy over the deep water of South Caspian Basin (SCB), which extended from surface to subsurface and persist throughout the year. The model successfully produced the coastal current along the eastern coast of the Middle Caspian Basin (MCB) with a prevailing southward component, resulting in upwelling on these coasts to compensate the surface drift. The results indicate that the bottom topography has a key role in steering currents and generated a divergence in the surface Ekman layer which balanced by convergence in the frictional bottom Ekman layer in deepest areas of the CS.","PeriodicalId":33914,"journal":{"name":"International Journal of Coastal and Offshore Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical Simulation of the Wind-Induced Current in the Caspian Sea\",\"authors\":\"Jalal Mofidi, A. R. E. Hesari\",\"doi\":\"10.29252/IJCOE.2.1.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Article History: Received: 14 May 2018 Accepted: 13 Jun. 2018 A three-dimensional primitive equation model has been developed to study wind-driven currents in the Caspian Sea (CS). The equations were solved in the spherical coordinate system with a vertical array of pressure-sigma using a finite difference Method on a staggered modified Arakawa c grid. Simulations showed that there is an anticyclonic eddy over the deep water of South Caspian Basin (SCB), which extended from surface to subsurface and persist throughout the year. The model successfully produced the coastal current along the eastern coast of the Middle Caspian Basin (MCB) with a prevailing southward component, resulting in upwelling on these coasts to compensate the surface drift. The results indicate that the bottom topography has a key role in steering currents and generated a divergence in the surface Ekman layer which balanced by convergence in the frictional bottom Ekman layer in deepest areas of the CS.\",\"PeriodicalId\":33914,\"journal\":{\"name\":\"International Journal of Coastal and Offshore Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coastal and Offshore Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/IJCOE.2.1.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coastal and Offshore Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/IJCOE.2.1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文章历史:收稿时间:2018年5月14日接收时间:2018年6月13日建立了一个三维原始方程模型来研究里海(CS)的风力流。在球坐标系下,采用正交修正Arakawa c网格,用有限差分法求解了压力-西格玛垂直阵列的方程。模拟结果表明,南里海盆地(SCB)深水上空存在一个从地表向地下延伸的反气旋涡旋,并持续了一年。该模式成功地在中里海盆地东部沿海产生了主要向南的沿海流,导致这些海岸的上升流补偿了地面漂移。结果表明,底部地形对洋流的转向起着关键作用,并在表层Ekman层中产生辐散,而在表层最深的摩擦底Ekman层中辐合平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of the Wind-Induced Current in the Caspian Sea
Article History: Received: 14 May 2018 Accepted: 13 Jun. 2018 A three-dimensional primitive equation model has been developed to study wind-driven currents in the Caspian Sea (CS). The equations were solved in the spherical coordinate system with a vertical array of pressure-sigma using a finite difference Method on a staggered modified Arakawa c grid. Simulations showed that there is an anticyclonic eddy over the deep water of South Caspian Basin (SCB), which extended from surface to subsurface and persist throughout the year. The model successfully produced the coastal current along the eastern coast of the Middle Caspian Basin (MCB) with a prevailing southward component, resulting in upwelling on these coasts to compensate the surface drift. The results indicate that the bottom topography has a key role in steering currents and generated a divergence in the surface Ekman layer which balanced by convergence in the frictional bottom Ekman layer in deepest areas of the CS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Rationality for Engineers Part II- Heuristics and Biases Reliability analysis of Tension-Leg Platform Tendon with Respect to Fatigue Failure under Environmental Condition of Caspian Sea Integration of Geographical Information System and Tsunami generation/propagation models in the Makran region (North of the Arabian Sea) Simulation of Tidal in Khowr-e Musa by Using the TELEMAC Numerical ‎Model Impact of Hydrodynamic Forces on Morphodynamic Classification of Beaches in some parts of the Iranian coasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1