相关从众还是微妙的不从众?美国犹他州亨利山区上白垩统Mancos页岩层序边界的远端表达

IF 2 4区 地球科学 Q1 GEOLOGY Journal of Sedimentary Research Pub Date : 2022-07-13 DOI:10.2110/jsr.2021.103
Zhiyang Li, J. Schieber
{"title":"相关从众还是微妙的不从众?美国犹他州亨利山区上白垩统Mancos页岩层序边界的远端表达","authors":"Zhiyang Li, J. Schieber","doi":"10.2110/jsr.2021.103","DOIUrl":null,"url":null,"abstract":"\n In models of siliciclastic sequence stratigraphy, the sequence boundary in distal marine environments, where the strata are mudstone dominated, is usually considered a correlative conformity—the seaward extension of a subaerial unconformity. Despite its wide usage in the literature, objective recognition criteria of a correlative conformity remain lacking, largely due to the limited number of case studies directly examining the characteristics of sequence boundaries in offshore mudstone-dominated environments. This study focuses on the mudstone-dominated transitional interval between the Tununk Shale Member and the Ferron Sandstone Member of the Mancos Shale Formation exposed in south-central Utah to extend our understanding of the characteristics of a sequence boundary developed in the distal shelf environment of a ramp setting. An integrated sedimentologic, petrographic, and sequence stratigraphic analysis was conducted to characterize the sequence boundary that separates the Tununk from the Ferron depositional system (hereafter referred to as the T-F sequence boundary) and its lateral along-depositional-strike variability.\n Although manifest as a mudstone-on-mudstone contact, the T-F sequence boundary in all three measured sections is a subtle unconformity, characterized by erosional truncation below and onlap above, and marks a distinct basinward shift in facies association. The T-F sequence boundary also marks the change from the Tununk offshore mud-belt system to the Ferron Notom delta system, and therefore represents a surface that divides two genetically different depositional systems. Based on two distinct marker beds that bracket the T-F sequence boundary, the T-F sequence boundary can be traced across the study area with confidence. The lateral variability in the characteristics of the T-F sequence boundary along depositional strike indicates that it was produced by an allogenic base-level fall.\n Offshore shelfal mudstone strata may contain a significantly higher incidence of subtle unconformities analogous to the T-F sequence boundary than currently appreciated. Careful sedimentologic and petrographic analyses, combined with lateral correlations constrained by reliable chronostratigraphic marker beds, are essential for identifying subtle unconformities in shelf mudstone successions. The accurate recognition of subtle unconformities in mudstone strata is critical to apply the sequence stratigraphic approach appropriately to distal shelf environments, as well as to better constrain the timing and cause (allogenic vs. autogenic) of relative changes of sea level recorded in these rocks.","PeriodicalId":17044,"journal":{"name":"Journal of Sedimentary Research","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Correlative conformity or subtle unconformity? The distal expression of a sequence boundary in the Upper Cretaceous Mancos Shale, Henry Mountains Region, Utah, U.S.A.\",\"authors\":\"Zhiyang Li, J. Schieber\",\"doi\":\"10.2110/jsr.2021.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In models of siliciclastic sequence stratigraphy, the sequence boundary in distal marine environments, where the strata are mudstone dominated, is usually considered a correlative conformity—the seaward extension of a subaerial unconformity. Despite its wide usage in the literature, objective recognition criteria of a correlative conformity remain lacking, largely due to the limited number of case studies directly examining the characteristics of sequence boundaries in offshore mudstone-dominated environments. This study focuses on the mudstone-dominated transitional interval between the Tununk Shale Member and the Ferron Sandstone Member of the Mancos Shale Formation exposed in south-central Utah to extend our understanding of the characteristics of a sequence boundary developed in the distal shelf environment of a ramp setting. An integrated sedimentologic, petrographic, and sequence stratigraphic analysis was conducted to characterize the sequence boundary that separates the Tununk from the Ferron depositional system (hereafter referred to as the T-F sequence boundary) and its lateral along-depositional-strike variability.\\n Although manifest as a mudstone-on-mudstone contact, the T-F sequence boundary in all three measured sections is a subtle unconformity, characterized by erosional truncation below and onlap above, and marks a distinct basinward shift in facies association. The T-F sequence boundary also marks the change from the Tununk offshore mud-belt system to the Ferron Notom delta system, and therefore represents a surface that divides two genetically different depositional systems. Based on two distinct marker beds that bracket the T-F sequence boundary, the T-F sequence boundary can be traced across the study area with confidence. The lateral variability in the characteristics of the T-F sequence boundary along depositional strike indicates that it was produced by an allogenic base-level fall.\\n Offshore shelfal mudstone strata may contain a significantly higher incidence of subtle unconformities analogous to the T-F sequence boundary than currently appreciated. Careful sedimentologic and petrographic analyses, combined with lateral correlations constrained by reliable chronostratigraphic marker beds, are essential for identifying subtle unconformities in shelf mudstone successions. The accurate recognition of subtle unconformities in mudstone strata is critical to apply the sequence stratigraphic approach appropriately to distal shelf environments, as well as to better constrain the timing and cause (allogenic vs. autogenic) of relative changes of sea level recorded in these rocks.\",\"PeriodicalId\":17044,\"journal\":{\"name\":\"Journal of Sedimentary Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sedimentary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/jsr.2021.103\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sedimentary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/jsr.2021.103","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在硅质碎屑层序地层学模型中,以泥岩为主的远端海洋环境中的层序边界通常被认为是一种相关的整合——陆上不整合的向海延伸。尽管在文献中广泛使用,但相关一致性的客观识别标准仍然缺乏,这主要是由于直接检查近海泥岩主导环境中层序边界特征的案例研究数量有限。本研究的重点是犹他州中南部Mancos页岩组的Tununk页岩段和Ferron砂岩段之间以泥岩为主的过渡层段,以扩展我们对斜坡设置的远端陆架环境中形成的层序边界特征的理解。进行了综合沉积学、岩石学和层序地层分析,以确定将图努克与费隆沉积体系分隔开的层序边界(以下简称T-F层序边界)及其沿沉积走向的横向变化。尽管表现为泥岩-泥岩接触,但所有三个测量剖面中的T-F序列边界都是一个微妙的不整合,其特征是下面的侵蚀截断和上面的超覆,并标志着相组合明显的向盆地移动。T-F序列边界也标志着从Tununk近海泥带系统到Ferron-Notom三角洲系统的变化,因此代表了一个划分两个基因不同沉积系统的表面。基于包围T-F序列边界的两个不同的标记层,可以在整个研究区域可靠地追踪T-F序列的边界。沿沉积走向的T-F序列边界特征的横向变化表明,它是由异基因基准面下降产生的。近海陆架泥岩地层可能包含比目前所认为的更高的类似于T-F序列边界的细微不整合的发生率。仔细的沉积学和岩相分析,加上受可靠年代地层标志层约束的横向对比,对于识别陆架泥岩序列中的细微不整合至关重要。准确识别泥岩地层中的细微不整合面,对于将层序地层学方法适当应用于远端陆架环境,以及更好地约束这些岩石中记录的海平面相对变化的时间和原因(同源与自生)至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlative conformity or subtle unconformity? The distal expression of a sequence boundary in the Upper Cretaceous Mancos Shale, Henry Mountains Region, Utah, U.S.A.
In models of siliciclastic sequence stratigraphy, the sequence boundary in distal marine environments, where the strata are mudstone dominated, is usually considered a correlative conformity—the seaward extension of a subaerial unconformity. Despite its wide usage in the literature, objective recognition criteria of a correlative conformity remain lacking, largely due to the limited number of case studies directly examining the characteristics of sequence boundaries in offshore mudstone-dominated environments. This study focuses on the mudstone-dominated transitional interval between the Tununk Shale Member and the Ferron Sandstone Member of the Mancos Shale Formation exposed in south-central Utah to extend our understanding of the characteristics of a sequence boundary developed in the distal shelf environment of a ramp setting. An integrated sedimentologic, petrographic, and sequence stratigraphic analysis was conducted to characterize the sequence boundary that separates the Tununk from the Ferron depositional system (hereafter referred to as the T-F sequence boundary) and its lateral along-depositional-strike variability. Although manifest as a mudstone-on-mudstone contact, the T-F sequence boundary in all three measured sections is a subtle unconformity, characterized by erosional truncation below and onlap above, and marks a distinct basinward shift in facies association. The T-F sequence boundary also marks the change from the Tununk offshore mud-belt system to the Ferron Notom delta system, and therefore represents a surface that divides two genetically different depositional systems. Based on two distinct marker beds that bracket the T-F sequence boundary, the T-F sequence boundary can be traced across the study area with confidence. The lateral variability in the characteristics of the T-F sequence boundary along depositional strike indicates that it was produced by an allogenic base-level fall. Offshore shelfal mudstone strata may contain a significantly higher incidence of subtle unconformities analogous to the T-F sequence boundary than currently appreciated. Careful sedimentologic and petrographic analyses, combined with lateral correlations constrained by reliable chronostratigraphic marker beds, are essential for identifying subtle unconformities in shelf mudstone successions. The accurate recognition of subtle unconformities in mudstone strata is critical to apply the sequence stratigraphic approach appropriately to distal shelf environments, as well as to better constrain the timing and cause (allogenic vs. autogenic) of relative changes of sea level recorded in these rocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is broad and international in scope and welcomes contributions that further the fundamental understanding of sedimentary processes, the origin of sedimentary deposits, the workings of sedimentary systems, and the records of earth history contained within sedimentary rocks.
期刊最新文献
Recognition of cross-shore dynamics of longshore bars in upper-shoreface deposits of prograding sandy coastal barriers Random and time-persistent depositional processes in turbidite successions: an example from the marine deep-water Aoshima Formation (Neogene, Kyushu Island, southwest Japan) Rapid diagenesis and microbial biosignature degradation in spring carbonates from Crystal Geyser, Utah, U.S.A. Detrital signatures of clastic serpentinite in tectonically diverse settings and interpretation of an example from the Northern Apennines Understanding siderite mineralization in phyllosilicate-associated cementations in the mid-Carboniferous Anadarko Basin clastic series, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1