基于pcr的筛选试验检测SMN1丢失

IF 0.2 Q4 MEDICINE, GENERAL & INTERNAL Bulletin of Russian State Medical University Pub Date : 2023-06-01 DOI:10.24075/brsmu.2023.025
VD Nazarov, C. Cherebillo, S. Lapin, DV Sidorenko, YA Devyatkina, AC Musonova, TV Petrova, AI Nikiforova, A. Ivanova
{"title":"基于pcr的筛选试验检测SMN1丢失","authors":"VD Nazarov, C. Cherebillo, S. Lapin, DV Sidorenko, YA Devyatkina, AC Musonova, TV Petrova, AI Nikiforova, A. Ivanova","doi":"10.24075/brsmu.2023.025","DOIUrl":null,"url":null,"abstract":"Spinal muscular atrophy (SMA) is an inherited neuromuscular disease characterized by progressive skeletal muscular weakness and atrophy. The newborn screening for spinal muscular atrophy should define all molecular forms of SMA. The aim of this study is to compare a PCR-based test for detection of homozygous SMN1 loss with multiple ligation probe amplification (MPLA) in patients with spinal muscular atrophy and other numerical changes of the SMN1 gene. PCR-based test was used to detect exon 7 of SMN1 gene homozygous loss. The study included 341 samples of patients with clinical suspicion of SMA from Biobank of Centre of Molecular Medicine of Pavlov State Medical University (Saint-Petersburg, Russia). Group 1 included 206 whole blood samples and Group 2 included 135 dried blood spot (DBS) samples. Copy number of the SMN1 and SMN2 genes had been evaluated with MLPA as a reference method. The results showed that kit was able to detect homozygous SMN1 loss in all samples from group 1 and 2 (Group 1: n = 67; 33%; Group 2: n = 19; 14%). At the same time in all samples with 1–3 copies of the SMN1 gene, the results of the kit were negative for homozygous loss of SMN1 gene (Group 1: n = 139; 67%; Group 2: n = 116; 86%). Kit showed high effectiveness in the detection of homozygous loss SMN1 gene. The kit detects all possible molecular forms of homozygous SMN1 gene loss in both DNA samples extracted from the whole blood and DBS.","PeriodicalId":9344,"journal":{"name":"Bulletin of Russian State Medical University","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of SMN1 loss with PCR-based screening test\",\"authors\":\"VD Nazarov, C. Cherebillo, S. Lapin, DV Sidorenko, YA Devyatkina, AC Musonova, TV Petrova, AI Nikiforova, A. Ivanova\",\"doi\":\"10.24075/brsmu.2023.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinal muscular atrophy (SMA) is an inherited neuromuscular disease characterized by progressive skeletal muscular weakness and atrophy. The newborn screening for spinal muscular atrophy should define all molecular forms of SMA. The aim of this study is to compare a PCR-based test for detection of homozygous SMN1 loss with multiple ligation probe amplification (MPLA) in patients with spinal muscular atrophy and other numerical changes of the SMN1 gene. PCR-based test was used to detect exon 7 of SMN1 gene homozygous loss. The study included 341 samples of patients with clinical suspicion of SMA from Biobank of Centre of Molecular Medicine of Pavlov State Medical University (Saint-Petersburg, Russia). Group 1 included 206 whole blood samples and Group 2 included 135 dried blood spot (DBS) samples. Copy number of the SMN1 and SMN2 genes had been evaluated with MLPA as a reference method. The results showed that kit was able to detect homozygous SMN1 loss in all samples from group 1 and 2 (Group 1: n = 67; 33%; Group 2: n = 19; 14%). At the same time in all samples with 1–3 copies of the SMN1 gene, the results of the kit were negative for homozygous loss of SMN1 gene (Group 1: n = 139; 67%; Group 2: n = 116; 86%). Kit showed high effectiveness in the detection of homozygous loss SMN1 gene. The kit detects all possible molecular forms of homozygous SMN1 gene loss in both DNA samples extracted from the whole blood and DBS.\",\"PeriodicalId\":9344,\"journal\":{\"name\":\"Bulletin of Russian State Medical University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Russian State Medical University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24075/brsmu.2023.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Russian State Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24075/brsmu.2023.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

脊髓性肌萎缩(SMA)是一种以进行性骨骼肌无力和萎缩为特征的遗传性神经肌肉疾病。新生儿脊髓性肌萎缩筛查应明确SMA的所有分子形式。本研究的目的是比较基于PCR的检测脊髓性肌萎缩症患者纯合子SMN1缺失的检测方法与多重连接探针扩增(MPLA)以及SMN1基因的其他数值变化。采用PCR检测SMN1基因第7外显子纯合子缺失。该研究包括来自巴甫洛夫国立医科大学(俄罗斯圣彼得堡)分子医学中心生物库的341份临床怀疑SMA的患者样本。第1组包括206份全血样本,第2组包括135份干血点(DBS)样本。SMN1和SMN2基因的拷贝数已经用MLPA作为参考方法进行了评估。结果显示,试剂盒能够检测来自第1组和第2组的所有样品中的纯合SMN1缺失(第1组:n=67;33%;第2组:n=19;14%)。同时,在具有1-3个拷贝的SMN1基因的所有样本中,试剂盒的结果为SMN1基因纯合缺失阴性(第1组:n=139;67%;第2组:n=116;86%)。试剂盒在检测纯合缺失SMN1基因方面显示出很高的有效性。该试剂盒检测从全血和DBS提取的DNA样本中纯合SMN1基因缺失的所有可能的分子形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of SMN1 loss with PCR-based screening test
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease characterized by progressive skeletal muscular weakness and atrophy. The newborn screening for spinal muscular atrophy should define all molecular forms of SMA. The aim of this study is to compare a PCR-based test for detection of homozygous SMN1 loss with multiple ligation probe amplification (MPLA) in patients with spinal muscular atrophy and other numerical changes of the SMN1 gene. PCR-based test was used to detect exon 7 of SMN1 gene homozygous loss. The study included 341 samples of patients with clinical suspicion of SMA from Biobank of Centre of Molecular Medicine of Pavlov State Medical University (Saint-Petersburg, Russia). Group 1 included 206 whole blood samples and Group 2 included 135 dried blood spot (DBS) samples. Copy number of the SMN1 and SMN2 genes had been evaluated with MLPA as a reference method. The results showed that kit was able to detect homozygous SMN1 loss in all samples from group 1 and 2 (Group 1: n = 67; 33%; Group 2: n = 19; 14%). At the same time in all samples with 1–3 copies of the SMN1 gene, the results of the kit were negative for homozygous loss of SMN1 gene (Group 1: n = 139; 67%; Group 2: n = 116; 86%). Kit showed high effectiveness in the detection of homozygous loss SMN1 gene. The kit detects all possible molecular forms of homozygous SMN1 gene loss in both DNA samples extracted from the whole blood and DBS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Russian State Medical University
Bulletin of Russian State Medical University MEDICINE, GENERAL & INTERNAL-
CiteScore
0.80
自引率
0.00%
发文量
59
期刊介绍: Bulletin of Russian State Medical University (Bulletin of RSMU, ISSN Print 2500–1094, ISSN Online 2542–1204) is a peer-reviewed medical journal of Pirogov Russian National Research Medical University (Moscow, Russia). The original language of the journal is Russian (Vestnik Rossiyskogo Gosudarstvennogo Meditsinskogo Universiteta, Vestnik RGMU, ISSN Print 2070–7320, ISSN Online 2070–7339). Founded in 1994, it is issued once every two months publishing articles on clinical medicine and medical and biological sciences, first of all oncology, neurobiology, allergy and immunology, medical genetics, medical microbiology and infectious diseases. Every issue is thematic. Deadlines for manuscript submission are announced in advance. The number of publications on topics in spite of the issue topic is limited. The journal accepts only original articles submitted by their authors, including articles that present methods and techniques, clinical cases and opinions. Authors must guarantee that their work has not been previously published elsewhere in whole or in part and in other languages and is not under consideration by another scientific journal. The journal publishes only one review per issue; the review is ordered by the editors.
期刊最新文献
Genetically encoded light-inducible sensor for nucleolar visualization Prefrontal cortex transcranial theta-burst stimulation frequency-dependent effects on cognitive functions Comparative bioinformatics analysis of antimicrobial resistance gene pool in the genomes of representatives of genus Corynebacterium Efficacy of the jawbone defect elimination Ischemic stroke with and without brachiocephalic artery dissections: results of comprehensive examination of patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1