基于深度学习的移动旅游推荐系统

Dhomas Hatta Fudholi, Septia Rani, Dimas Arifin, Mochamad Rezky Satyatama
{"title":"基于深度学习的移动旅游推荐系统","authors":"Dhomas Hatta Fudholi, Septia Rani, Dimas Arifin, Mochamad Rezky Satyatama","doi":"10.15294/SJI.V8I1.29262","DOIUrl":null,"url":null,"abstract":"A tourism recommendation system is a crucial solution to help tourists discover more diverse tourism destinations. A content-based approach in a recommender system can be an effective way of recommending items because it looks at the user's preference histories. For a cold-start problem in the tourism domain, where rating data or past access may not be found, we can treat the user's past-travel-photos as the histories data. Besides, the use of photos as an input makes the user experience seamless and more effortless. The current development in Artificial Intelligence-based services enable the possibilities to implement such experience. This research developed a Deep Learning-based mobile tourism recommender system that gives recommendations on local tourism destinations based on the user's favorite traveling photos. To provide a recommendation, we use cosine similarity to measure the similarity score between one's pictures and tourism destination's galleries through their label tag vectors. The label tag is inferred using an image classifier model that runs from a mobile user device through Tensorflow Lite. There are 40 label tags, which refer to local tourism destination categories, activities, and objects. The model is trained using state-of-the-art mobile deep learning architecture EfficientNet-Lite. We did several experiments and got an accuracy result of more than 85% on average, using EfficientNet-Lite as the base architecture. The implementation of the system as an Android application has been proved to give an excellent recommendation with Mean Absolute Percentage Error (MAPE) equals to 5%.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning-based Mobile Tourism Recommender System\",\"authors\":\"Dhomas Hatta Fudholi, Septia Rani, Dimas Arifin, Mochamad Rezky Satyatama\",\"doi\":\"10.15294/SJI.V8I1.29262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tourism recommendation system is a crucial solution to help tourists discover more diverse tourism destinations. A content-based approach in a recommender system can be an effective way of recommending items because it looks at the user's preference histories. For a cold-start problem in the tourism domain, where rating data or past access may not be found, we can treat the user's past-travel-photos as the histories data. Besides, the use of photos as an input makes the user experience seamless and more effortless. The current development in Artificial Intelligence-based services enable the possibilities to implement such experience. This research developed a Deep Learning-based mobile tourism recommender system that gives recommendations on local tourism destinations based on the user's favorite traveling photos. To provide a recommendation, we use cosine similarity to measure the similarity score between one's pictures and tourism destination's galleries through their label tag vectors. The label tag is inferred using an image classifier model that runs from a mobile user device through Tensorflow Lite. There are 40 label tags, which refer to local tourism destination categories, activities, and objects. The model is trained using state-of-the-art mobile deep learning architecture EfficientNet-Lite. We did several experiments and got an accuracy result of more than 85% on average, using EfficientNet-Lite as the base architecture. The implementation of the system as an Android application has been proved to give an excellent recommendation with Mean Absolute Percentage Error (MAPE) equals to 5%.\",\"PeriodicalId\":30781,\"journal\":{\"name\":\"Scientific Journal of Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/SJI.V8I1.29262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/SJI.V8I1.29262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

旅游推荐系统是帮助游客发现更多不同旅游目的地的关键解决方案。推荐系统中基于内容的方法是一种有效的推荐方式,因为它会查看用户的偏好历史。对于旅游领域的冷启动问题,其中可能找不到评级数据或过去访问,我们可以将用户的过去旅行照片作为历史数据。此外,使用照片作为输入,使用户体验无缝,更加轻松。目前基于人工智能的服务的发展使实现这种体验成为可能。本研究开发了一个基于深度学习的移动旅游推荐系统,该系统可以根据用户最喜欢的旅游照片推荐当地的旅游目的地。为了提供推荐,我们使用余弦相似度来衡量一个人的照片和旅游目的地的画廊之间的相似度得分,通过他们的标签标签向量。标签标签是使用从移动用户设备通过Tensorflow Lite运行的图像分类器模型推断出来的。有40个标签标签,这些标签是指当地旅游目的地的类别、活动和对象。该模型使用最先进的移动深度学习架构EfficientNet-Lite进行训练。我们做了几次实验,得到了平均准确率超过85%的结果,使用effentnet - lite作为基本架构。该系统作为Android应用程序的实现已被证明提供了一个很好的推荐,平均绝对百分比误差(MAPE)等于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-based Mobile Tourism Recommender System
A tourism recommendation system is a crucial solution to help tourists discover more diverse tourism destinations. A content-based approach in a recommender system can be an effective way of recommending items because it looks at the user's preference histories. For a cold-start problem in the tourism domain, where rating data or past access may not be found, we can treat the user's past-travel-photos as the histories data. Besides, the use of photos as an input makes the user experience seamless and more effortless. The current development in Artificial Intelligence-based services enable the possibilities to implement such experience. This research developed a Deep Learning-based mobile tourism recommender system that gives recommendations on local tourism destinations based on the user's favorite traveling photos. To provide a recommendation, we use cosine similarity to measure the similarity score between one's pictures and tourism destination's galleries through their label tag vectors. The label tag is inferred using an image classifier model that runs from a mobile user device through Tensorflow Lite. There are 40 label tags, which refer to local tourism destination categories, activities, and objects. The model is trained using state-of-the-art mobile deep learning architecture EfficientNet-Lite. We did several experiments and got an accuracy result of more than 85% on average, using EfficientNet-Lite as the base architecture. The implementation of the system as an Android application has been proved to give an excellent recommendation with Mean Absolute Percentage Error (MAPE) equals to 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
A Comparative Study of Random Forest and Double Random Forest Models from View Points of Their Interpretability Comparative Analysis of LSTM Neural Network and SVM for USD Exchange Rate Prediction: A Study on Different Training Data Scenarios Knowledge Discovery from Confusion Matrix of Pruned CART in Imbalanced Microarray Data Ovarian Cancer Classification Comparison of Discriminant Analysis and Support Vector Machine on Mixed Categorical and Continuous Independent Variables for COVID-19 Patients Data The Comparison of K-Nearest Neighbors and Random Forest Algorithm to Recognize Indonesian Sign Language in a Real-Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1