柏茎皮粗提物的植物化学特性、抗糖化作用和晚期糖化终产物蛋白质交联断裂能力

Q3 Pharmacology, Toxicology and Pharmaceutics Journal of HerbMed Pharmacology Pub Date : 2022-09-21 DOI:10.34172/jhp.2022.61
O. Adeniran, A. Musyoki, L. Sethoga, M. Mogale, S. Gololo, L. J. Shai
{"title":"柏茎皮粗提物的植物化学特性、抗糖化作用和晚期糖化终产物蛋白质交联断裂能力","authors":"O. Adeniran, A. Musyoki, L. Sethoga, M. Mogale, S. Gololo, L. J. Shai","doi":"10.34172/jhp.2022.61","DOIUrl":null,"url":null,"abstract":"Introduction: Sclerocarya birrea stem-bark is widely used for the treatment of many medical conditions. Advanced glycation end-products (AGEs) are implicated in the pathogenesis of vascular complications of diabetes mellitus. The study, other than phytochemical composition, evaluated the anti-glycation and AGEs-protein cross-link breaking effects of S. birrea stem-bark extracts. Methods: Different S. birrea extracts and aminoguanidine (used as control) were incubated with bovine serum albumin (BSA) and glucose/fructose at 37oC for 40 days. Amounts of fluorescent AGEs (FAGEs) and immunogenic AGEs formed were determined. Anti-glycation activity percentage of each extract and aminoguanidine was calculated. Their AGEs-protein cross-link breaking abilities were also assessed. Standard techniques were employed for phytochemical screening. Volatile compounds were identified by means of gas chromatography mass spectrometry (GC-MS). Results: S. birrea stem-bark n-hexane extract was statistically more effective than aminoguanidine against the formation of total immunogenic AGEs (P<0.05). For FAGEs, ethyl acetate, methanol, and water extracts exerted significantly higher anti-glycation effects than aminoguanidine (P<0.001). Methanol extract exhibited the highest anti-glycation effect with an average IC50 value of 0.142 mg/mL against FAGEs. All extracts were effective in releasing BSA from the preformed collagen-AGEs-BSA cross-links. GC-MS enabled the identification of many biologically important compounds, including campesterol, stigmasterol, and 1-heptatricontanol. Conclusion: S. birrea stem-bark has a potential for usage in the management of complications in uncontrolled glucose metabolism.","PeriodicalId":15934,"journal":{"name":"Journal of HerbMed Pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemical profile, anti-glycation effect, and advanced glycation end-products protein cross-link breaking ability of Sclerocarya birrea stem-bark crude extracts\",\"authors\":\"O. Adeniran, A. Musyoki, L. Sethoga, M. Mogale, S. Gololo, L. J. Shai\",\"doi\":\"10.34172/jhp.2022.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Sclerocarya birrea stem-bark is widely used for the treatment of many medical conditions. Advanced glycation end-products (AGEs) are implicated in the pathogenesis of vascular complications of diabetes mellitus. The study, other than phytochemical composition, evaluated the anti-glycation and AGEs-protein cross-link breaking effects of S. birrea stem-bark extracts. Methods: Different S. birrea extracts and aminoguanidine (used as control) were incubated with bovine serum albumin (BSA) and glucose/fructose at 37oC for 40 days. Amounts of fluorescent AGEs (FAGEs) and immunogenic AGEs formed were determined. Anti-glycation activity percentage of each extract and aminoguanidine was calculated. Their AGEs-protein cross-link breaking abilities were also assessed. Standard techniques were employed for phytochemical screening. Volatile compounds were identified by means of gas chromatography mass spectrometry (GC-MS). Results: S. birrea stem-bark n-hexane extract was statistically more effective than aminoguanidine against the formation of total immunogenic AGEs (P<0.05). For FAGEs, ethyl acetate, methanol, and water extracts exerted significantly higher anti-glycation effects than aminoguanidine (P<0.001). Methanol extract exhibited the highest anti-glycation effect with an average IC50 value of 0.142 mg/mL against FAGEs. All extracts were effective in releasing BSA from the preformed collagen-AGEs-BSA cross-links. GC-MS enabled the identification of many biologically important compounds, including campesterol, stigmasterol, and 1-heptatricontanol. Conclusion: S. birrea stem-bark has a potential for usage in the management of complications in uncontrolled glucose metabolism.\",\"PeriodicalId\":15934,\"journal\":{\"name\":\"Journal of HerbMed Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of HerbMed Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jhp.2022.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of HerbMed Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jhp.2022.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

简介:柏茎皮广泛用于治疗多种疾病。晚期糖基化终产物(AGEs)与糖尿病血管并发症的发病机制有关。除了植物化学成分外,这项研究还评估了双孢茎皮提取物的抗糖化作用和AGEs蛋白交联破坏作用。方法:将不同的双孢菌提取物和氨基胍(作为对照)与牛血清白蛋白(BSA)和葡萄糖/果糖在37℃下孵育40天。测定所形成的荧光AGEs(FAGEs)和免疫原性AGEs的量。计算每种提取物和氨基胍的抗糖化活性百分比。还评估了它们的AGEs蛋白交联断裂能力。采用标准技术进行植物化学筛选。采用气相色谱-质谱联用技术对挥发性化合物进行了鉴定。结果:双孢茎皮正己烷提取物对总免疫原性AGEs的形成有统计学意义(P<0.05),水提取物的抗糖化作用明显高于氨基胍(P<0.001)。甲醇提取物对FAGEs的抗糖化效果最高,平均IC50值为0.142mg/mL。所有提取物都能有效地从预先形成的胶原AGEs-BSA交联中释放BSA。GC-MS能够鉴定许多生物上重要的化合物,包括樟脑甾醇、豆甾醇和1-庚三醇。结论:桦树茎皮具有治疗糖代谢失控并发症的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phytochemical profile, anti-glycation effect, and advanced glycation end-products protein cross-link breaking ability of Sclerocarya birrea stem-bark crude extracts
Introduction: Sclerocarya birrea stem-bark is widely used for the treatment of many medical conditions. Advanced glycation end-products (AGEs) are implicated in the pathogenesis of vascular complications of diabetes mellitus. The study, other than phytochemical composition, evaluated the anti-glycation and AGEs-protein cross-link breaking effects of S. birrea stem-bark extracts. Methods: Different S. birrea extracts and aminoguanidine (used as control) were incubated with bovine serum albumin (BSA) and glucose/fructose at 37oC for 40 days. Amounts of fluorescent AGEs (FAGEs) and immunogenic AGEs formed were determined. Anti-glycation activity percentage of each extract and aminoguanidine was calculated. Their AGEs-protein cross-link breaking abilities were also assessed. Standard techniques were employed for phytochemical screening. Volatile compounds were identified by means of gas chromatography mass spectrometry (GC-MS). Results: S. birrea stem-bark n-hexane extract was statistically more effective than aminoguanidine against the formation of total immunogenic AGEs (P<0.05). For FAGEs, ethyl acetate, methanol, and water extracts exerted significantly higher anti-glycation effects than aminoguanidine (P<0.001). Methanol extract exhibited the highest anti-glycation effect with an average IC50 value of 0.142 mg/mL against FAGEs. All extracts were effective in releasing BSA from the preformed collagen-AGEs-BSA cross-links. GC-MS enabled the identification of many biologically important compounds, including campesterol, stigmasterol, and 1-heptatricontanol. Conclusion: S. birrea stem-bark has a potential for usage in the management of complications in uncontrolled glucose metabolism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of HerbMed Pharmacology
Journal of HerbMed Pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
2.50
自引率
0.00%
发文量
49
审稿时长
12 weeks
期刊介绍: Journal of Herbmed Pharmacology (J Herbmed Pharmacol) is the intersection between medicinal plants and pharmacology. This international journal publishes manuscripts in the fields of medicinal plants, pharmacology and therapeutic. This journal aims to reach all relevant national and international medical institutions and persons in electronic version free of charge. J Herbmed Pharmacol has pursued this aim through publishing editorials, original research articles, reviews, mini-reviews, commentaries, letters to the editor, hypothesis, case reports, epidemiology and prevention, news and views. In this journal, particular emphasis is given to research, both experimental and clinical, aimed at protection/prevention of diseases. A further aim of this journal is to emphasize and strengthen the link between herbalists and pharmacologists. In addition, J Herbmed Pharmacol welcomes basic biomedical as well as pharmaceutical scientific research applied to clinical pharmacology. Contributions in any of these formats are invited for editorial consideration following peer review by at least two experts in the field.
期刊最新文献
Epigallocatechin gallate, the primary bioactive component from Camellia sinensis: A review on immunomodulatory effects in autoimmune diseases by balancing the differentiation of Th and Treg cells Rethinking the basic action modes of herbal medicine and pondering classical standardization Exploring the anti-acne potential of Muntingia calabura L leaves against Staphylococcus epidermidis: In vitro and in silico perspective Solanum trilobatum leaf extract-derived silver nanoparticles downregulate the PI3K/AKT/mTOR signaling pathway and attenuate oral squamous cell carcinoma cell proliferation Integrative computational approaches for designing novel alpha-glucosidase inhibitors based on curculigoside A derivatives: Virtual screening, molecular docking, and molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1