概述地表地球化学和指示矿物调查和案例研究,来自加拿大地质调查局的GEM计划

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemistry-Exploration Environment Analysis Pub Date : 2021-12-02 DOI:10.1144/geochem2021-070
M. McClenaghan, W. Spirito, S. Day, M. McCurdy, R. McNeil, S. Adcock
{"title":"概述地表地球化学和指示矿物调查和案例研究,来自加拿大地质调查局的GEM计划","authors":"M. McClenaghan, W. Spirito, S. Day, M. McCurdy, R. McNeil, S. Adcock","doi":"10.1144/geochem2021-070","DOIUrl":null,"url":null,"abstract":"The Geological Survey of Canada carried out reconnaissance-scale to deposit-scale geochemical and indicator-mineral surveys and case studies across northern Canada between 2008 and 2020 as part of its Geo-mapping for Energy and Minerals (GEM) program. In these studies, surficial geochemistry was used to determine the concentrations of up to 65 elements in various sample media including lake sediment, lake water, stream sediment, stream water, or till samples across approximately 1 000 000 km2 of northern Canada. As part of these surficial geochemistry surveys, indicator mineral methods were also used in regional-scale and deposit-scale stream sediment and till surveys. Through this program, areas with anomalous concentrations of elements and/or indicator minerals that are indicative of bedrock mineralization were identified, new mineral exploration models and protocols were developed, a new generation of geoscientists was trained, and geoscience knowledge was transferred to northern communities. Regional- and deposit-scale studies demonstrated how transport data (till geochemistry, indicator mineral abundance) and ice-flow indicator data can be used together to identify and understand complex ice flow and glacial transport. Detailed studies at the Izok Lake Zn–Cu–Pb–Ag VMS, Nunavut, the Pine Point carbonate-hosted Pb–Zn in the Northwest Territories, the Strange Lake REE deposit in Quebec and Labrador as well as U–Cu–Fe–F and Cu–Ag–Au–Au IOCG deposits in the Great Bear magmatic zone, Northwest Territories demonstrate new suites of indicator minerals that can now be used in future reconnaissance- and regional-scale stream sediment and till surveys across Canada.","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Overview of surficial geochemistry and indicator mineral surveys and case studies from the Geological Survey of Canada's GEM Program\",\"authors\":\"M. McClenaghan, W. Spirito, S. Day, M. McCurdy, R. McNeil, S. Adcock\",\"doi\":\"10.1144/geochem2021-070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Geological Survey of Canada carried out reconnaissance-scale to deposit-scale geochemical and indicator-mineral surveys and case studies across northern Canada between 2008 and 2020 as part of its Geo-mapping for Energy and Minerals (GEM) program. In these studies, surficial geochemistry was used to determine the concentrations of up to 65 elements in various sample media including lake sediment, lake water, stream sediment, stream water, or till samples across approximately 1 000 000 km2 of northern Canada. As part of these surficial geochemistry surveys, indicator mineral methods were also used in regional-scale and deposit-scale stream sediment and till surveys. Through this program, areas with anomalous concentrations of elements and/or indicator minerals that are indicative of bedrock mineralization were identified, new mineral exploration models and protocols were developed, a new generation of geoscientists was trained, and geoscience knowledge was transferred to northern communities. Regional- and deposit-scale studies demonstrated how transport data (till geochemistry, indicator mineral abundance) and ice-flow indicator data can be used together to identify and understand complex ice flow and glacial transport. Detailed studies at the Izok Lake Zn–Cu–Pb–Ag VMS, Nunavut, the Pine Point carbonate-hosted Pb–Zn in the Northwest Territories, the Strange Lake REE deposit in Quebec and Labrador as well as U–Cu–Fe–F and Cu–Ag–Au–Au IOCG deposits in the Great Bear magmatic zone, Northwest Territories demonstrate new suites of indicator minerals that can now be used in future reconnaissance- and regional-scale stream sediment and till surveys across Canada.\",\"PeriodicalId\":55114,\"journal\":{\"name\":\"Geochemistry-Exploration Environment Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry-Exploration Environment Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/geochem2021-070\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-070","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

2008年至2020年间,加拿大地质调查局在加拿大北部进行了按矿床规模的地球化学和指示矿物调查以及案例研究,作为其能源和矿产地质测绘(GEM)计划的一部分。在这些研究中,表层地球化学用于确定各种样品介质中多达65种元素的浓度,包括湖泊沉积物、湖水、溪流沉积物、溪流水或大约1 000 000 加拿大北部平方公里。作为这些表层地球化学调查的一部分,指示矿物方法也用于区域规模和矿床规模的河流沉积物和沉积物调查。通过该项目,确定了指示基岩矿化的元素和/或指示矿物浓度异常的地区,开发了新的矿产勘探模型和协议,培训了新一代地球科学家,并将地球科学知识转移到北方社区。区域和矿床规模的研究表明,运输数据(直到地球化学、指示矿物丰度)和冰流指示数据可以一起用于识别和理解复杂的冰流和冰川运输。对努纳武特Izok Lake Zn–Cu–Pb–Ag VMS、西北地区的Pine Point碳酸盐岩型Pb–Zn、魁北克和拉布拉多的Strange Lake REE矿床以及大熊岩浆带的U–Cu–Fe–F和Cu–Ag–Au–Au-IOCG矿床的详细研究,西北地区展示了一系列新的指示矿物,这些矿物现在可以用于未来的勘察和区域范围的河流沉积物以及加拿大各地的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of surficial geochemistry and indicator mineral surveys and case studies from the Geological Survey of Canada's GEM Program
The Geological Survey of Canada carried out reconnaissance-scale to deposit-scale geochemical and indicator-mineral surveys and case studies across northern Canada between 2008 and 2020 as part of its Geo-mapping for Energy and Minerals (GEM) program. In these studies, surficial geochemistry was used to determine the concentrations of up to 65 elements in various sample media including lake sediment, lake water, stream sediment, stream water, or till samples across approximately 1 000 000 km2 of northern Canada. As part of these surficial geochemistry surveys, indicator mineral methods were also used in regional-scale and deposit-scale stream sediment and till surveys. Through this program, areas with anomalous concentrations of elements and/or indicator minerals that are indicative of bedrock mineralization were identified, new mineral exploration models and protocols were developed, a new generation of geoscientists was trained, and geoscience knowledge was transferred to northern communities. Regional- and deposit-scale studies demonstrated how transport data (till geochemistry, indicator mineral abundance) and ice-flow indicator data can be used together to identify and understand complex ice flow and glacial transport. Detailed studies at the Izok Lake Zn–Cu–Pb–Ag VMS, Nunavut, the Pine Point carbonate-hosted Pb–Zn in the Northwest Territories, the Strange Lake REE deposit in Quebec and Labrador as well as U–Cu–Fe–F and Cu–Ag–Au–Au IOCG deposits in the Great Bear magmatic zone, Northwest Territories demonstrate new suites of indicator minerals that can now be used in future reconnaissance- and regional-scale stream sediment and till surveys across Canada.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
期刊最新文献
Multi-element geochemical analyses on ultrafine soils in Western Australia - Towards establishing abundance ranges in mineral exploration settings Alteration assemblage characterization using machine learning applied to high resolution drill-core images, hyperspectral data, and geochemistry Silver, cobalt and nickel mineralogy and geochemistry of shale ore in the sediment-hosted stratiform Nowa Sól Cu-Ag deposit, SW Poland Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach Spatial distribution, ecological risk and origin of soil heavy metals in Laoguanhe watershed of the Middle Route of China's South-to-North Water Diversion Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1