T. Tuswan, P. Manik, Samuel Samuel, A. Suprihanto, S. Sulardjaka, Sri Nugroho, Boris Ferdinando Pakpahan
{"title":"船用竹材复合材料层状方向与力学特性的关系","authors":"T. Tuswan, P. Manik, Samuel Samuel, A. Suprihanto, S. Sulardjaka, Sri Nugroho, Boris Ferdinando Pakpahan","doi":"10.1515/cls-2022-0186","DOIUrl":null,"url":null,"abstract":"Abstract With the increased emphasis on the use of recyclable bio-based materials and further understanding of the mechanical properties of laminated bamboo, the development of a new generation of low-cost bamboo-based composites for ship structure has generated a significant interest. Laminated bamboo composites comprising Apus bamboo (Gigantochloa apus) and Waru fiber at different layer orientations were investigated to obtain the mechanical characteristics. The influence of different laminate directions was studied through several methods of mechanical testing, including impact tests using ASTM D256, bending tests using ASTM D7264, and tensile tests using ASTM D3039. Results showed that material strength properties could be improved by using on-axis direction (0°). The bamboo composites with unidirectional (0°) laminate direction exhibited superior mechanical properties to bidirectional laminate directions (45°/−45° and 0°/90°). The addition of Waru fiber improved the mechanical properties of the currently developed material; that is, bending strength increased by about 3.17–14.18% and tensile strength was in the range of 4.88–20.28%. Only those composites with 0° and 0°/90° layer orientations fulfilled the Indonesian Bureau Classification strength threshold.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation between lamina directions and the mechanical characteristics of laminated bamboo composite for ship structure\",\"authors\":\"T. Tuswan, P. Manik, Samuel Samuel, A. Suprihanto, S. Sulardjaka, Sri Nugroho, Boris Ferdinando Pakpahan\",\"doi\":\"10.1515/cls-2022-0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the increased emphasis on the use of recyclable bio-based materials and further understanding of the mechanical properties of laminated bamboo, the development of a new generation of low-cost bamboo-based composites for ship structure has generated a significant interest. Laminated bamboo composites comprising Apus bamboo (Gigantochloa apus) and Waru fiber at different layer orientations were investigated to obtain the mechanical characteristics. The influence of different laminate directions was studied through several methods of mechanical testing, including impact tests using ASTM D256, bending tests using ASTM D7264, and tensile tests using ASTM D3039. Results showed that material strength properties could be improved by using on-axis direction (0°). The bamboo composites with unidirectional (0°) laminate direction exhibited superior mechanical properties to bidirectional laminate directions (45°/−45° and 0°/90°). The addition of Waru fiber improved the mechanical properties of the currently developed material; that is, bending strength increased by about 3.17–14.18% and tensile strength was in the range of 4.88–20.28%. Only those composites with 0° and 0°/90° layer orientations fulfilled the Indonesian Bureau Classification strength threshold.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Correlation between lamina directions and the mechanical characteristics of laminated bamboo composite for ship structure
Abstract With the increased emphasis on the use of recyclable bio-based materials and further understanding of the mechanical properties of laminated bamboo, the development of a new generation of low-cost bamboo-based composites for ship structure has generated a significant interest. Laminated bamboo composites comprising Apus bamboo (Gigantochloa apus) and Waru fiber at different layer orientations were investigated to obtain the mechanical characteristics. The influence of different laminate directions was studied through several methods of mechanical testing, including impact tests using ASTM D256, bending tests using ASTM D7264, and tensile tests using ASTM D3039. Results showed that material strength properties could be improved by using on-axis direction (0°). The bamboo composites with unidirectional (0°) laminate direction exhibited superior mechanical properties to bidirectional laminate directions (45°/−45° and 0°/90°). The addition of Waru fiber improved the mechanical properties of the currently developed material; that is, bending strength increased by about 3.17–14.18% and tensile strength was in the range of 4.88–20.28%. Only those composites with 0° and 0°/90° layer orientations fulfilled the Indonesian Bureau Classification strength threshold.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.