{"title":"太阳能在工业供暖和制冷过程中的热利用:全球和埃塞俄比亚视角","authors":"Yacob Gebreyohannes, M. Bayray, J. Lauwaert","doi":"10.4314/MEJS.V12I2.6","DOIUrl":null,"url":null,"abstract":"A substantial share of the total energy in various countries is consumed by industries and manufacturing sectors. Most of the energy is used for low and medium temperature process heating (up to 300 degrees C) as well as low and medium cooling capacity (up to 350kW). To meet the demand, the industrial sector consumes most of its energy in either thermal (heat) or electrical energy forms. The use of fossil fuels accounts for about half of the overall share. This resulted in a necessity to commercialize local and clean renewable energy sources efficiently considering the reduction of economic dependence on fossil fuels and greenhouse gases emission. As such, solar energy has proven potential and resulted in considerable development and deployment of solar heating industrial processes (SHIP) and solar cooling systems in recent times. Thus, an attempt to present a review of the available literature on overall energy intensiveness, process temperature levels, solar technology match, and solar thermal system performance and cost have been made in this paper. The review also includes identifying the potential and relevance of involving solar thermal for industrial heating and cooling demand. As a result, at least 624 SHIP including promising large-scale plants and 1350 solar cooling systems most of them in small and medium capacities in operation are identified. Though limited data is available for solar cooling potential and installation, investigations projected the global SHIP potential to 5.6 EJ for 2050. Consequently, given the presence of many low and medium temperature heating processes and cooling capacities in industries with immense solar energy potential, developing counties such as Ethiopia can take experience and pay attention to the development of sustainable industrial systems.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":"12 1","pages":"232-256"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Review on Solar Thermal Utilization for Industrial Heating and Cooling Processes: Global and Ethiopian Perspective\",\"authors\":\"Yacob Gebreyohannes, M. Bayray, J. Lauwaert\",\"doi\":\"10.4314/MEJS.V12I2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A substantial share of the total energy in various countries is consumed by industries and manufacturing sectors. Most of the energy is used for low and medium temperature process heating (up to 300 degrees C) as well as low and medium cooling capacity (up to 350kW). To meet the demand, the industrial sector consumes most of its energy in either thermal (heat) or electrical energy forms. The use of fossil fuels accounts for about half of the overall share. This resulted in a necessity to commercialize local and clean renewable energy sources efficiently considering the reduction of economic dependence on fossil fuels and greenhouse gases emission. As such, solar energy has proven potential and resulted in considerable development and deployment of solar heating industrial processes (SHIP) and solar cooling systems in recent times. Thus, an attempt to present a review of the available literature on overall energy intensiveness, process temperature levels, solar technology match, and solar thermal system performance and cost have been made in this paper. The review also includes identifying the potential and relevance of involving solar thermal for industrial heating and cooling demand. As a result, at least 624 SHIP including promising large-scale plants and 1350 solar cooling systems most of them in small and medium capacities in operation are identified. Though limited data is available for solar cooling potential and installation, investigations projected the global SHIP potential to 5.6 EJ for 2050. Consequently, given the presence of many low and medium temperature heating processes and cooling capacities in industries with immense solar energy potential, developing counties such as Ethiopia can take experience and pay attention to the development of sustainable industrial systems.\",\"PeriodicalId\":18948,\"journal\":{\"name\":\"Momona Ethiopian Journal of Science\",\"volume\":\"12 1\",\"pages\":\"232-256\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Momona Ethiopian Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/MEJS.V12I2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/MEJS.V12I2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Review on Solar Thermal Utilization for Industrial Heating and Cooling Processes: Global and Ethiopian Perspective
A substantial share of the total energy in various countries is consumed by industries and manufacturing sectors. Most of the energy is used for low and medium temperature process heating (up to 300 degrees C) as well as low and medium cooling capacity (up to 350kW). To meet the demand, the industrial sector consumes most of its energy in either thermal (heat) or electrical energy forms. The use of fossil fuels accounts for about half of the overall share. This resulted in a necessity to commercialize local and clean renewable energy sources efficiently considering the reduction of economic dependence on fossil fuels and greenhouse gases emission. As such, solar energy has proven potential and resulted in considerable development and deployment of solar heating industrial processes (SHIP) and solar cooling systems in recent times. Thus, an attempt to present a review of the available literature on overall energy intensiveness, process temperature levels, solar technology match, and solar thermal system performance and cost have been made in this paper. The review also includes identifying the potential and relevance of involving solar thermal for industrial heating and cooling demand. As a result, at least 624 SHIP including promising large-scale plants and 1350 solar cooling systems most of them in small and medium capacities in operation are identified. Though limited data is available for solar cooling potential and installation, investigations projected the global SHIP potential to 5.6 EJ for 2050. Consequently, given the presence of many low and medium temperature heating processes and cooling capacities in industries with immense solar energy potential, developing counties such as Ethiopia can take experience and pay attention to the development of sustainable industrial systems.