A. Al-Alwani, V. N. Mironyuk, M. V. Pozharov, M. V. Gavrikov, E. Glukhovskoy
{"title":"卟啉/花生四酸混合体系的形成、相行为及Langmuir-Schaefer薄膜的形貌研究","authors":"A. Al-Alwani, V. N. Mironyuk, M. V. Pozharov, M. V. Gavrikov, E. Glukhovskoy","doi":"10.1080/1539445X.2022.2028829","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper is focused on the study of the dynamic surface properties of mixed monolayers of porphyrin and arachidic acid with various mole fractions at the air–water interface. The choice of porphyrin solid thin film as an object of study is explained by its high potential application in the area of photovoltaics and medicine. The Langmuir monolayers of porphyrin and arachidic acid were formed under different conditions using the Langmuir-Blodgett technique. The increase of subphase temperature led to a decrease in the rigidity of the porphyrin monolayer and leads to accelerating the relaxation process of the monolayer. The chosen surface pressure (4, 5, 15 and 35 mN/m) affected the stability of the floating monolayer. The higher miscibility of the monolayers was obtained at the mole fraction of porphyrin = 0.333. The change in the phase of monolayers surface was reported on the basis of surface potential data. The morphology properties of the mixed systems transferred on silicon substrates by Schaeffer method are studied.","PeriodicalId":22140,"journal":{"name":"Soft Materials","volume":"20 1","pages":"310 - 321"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation and phase behavior of porphyrin/arachidic acid mixed systems and morphology study of Langmuir-Schaefer thin films\",\"authors\":\"A. Al-Alwani, V. N. Mironyuk, M. V. Pozharov, M. V. Gavrikov, E. Glukhovskoy\",\"doi\":\"10.1080/1539445X.2022.2028829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The paper is focused on the study of the dynamic surface properties of mixed monolayers of porphyrin and arachidic acid with various mole fractions at the air–water interface. The choice of porphyrin solid thin film as an object of study is explained by its high potential application in the area of photovoltaics and medicine. The Langmuir monolayers of porphyrin and arachidic acid were formed under different conditions using the Langmuir-Blodgett technique. The increase of subphase temperature led to a decrease in the rigidity of the porphyrin monolayer and leads to accelerating the relaxation process of the monolayer. The chosen surface pressure (4, 5, 15 and 35 mN/m) affected the stability of the floating monolayer. The higher miscibility of the monolayers was obtained at the mole fraction of porphyrin = 0.333. The change in the phase of monolayers surface was reported on the basis of surface potential data. The morphology properties of the mixed systems transferred on silicon substrates by Schaeffer method are studied.\",\"PeriodicalId\":22140,\"journal\":{\"name\":\"Soft Materials\",\"volume\":\"20 1\",\"pages\":\"310 - 321\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1539445X.2022.2028829\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1539445X.2022.2028829","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Formation and phase behavior of porphyrin/arachidic acid mixed systems and morphology study of Langmuir-Schaefer thin films
ABSTRACT The paper is focused on the study of the dynamic surface properties of mixed monolayers of porphyrin and arachidic acid with various mole fractions at the air–water interface. The choice of porphyrin solid thin film as an object of study is explained by its high potential application in the area of photovoltaics and medicine. The Langmuir monolayers of porphyrin and arachidic acid were formed under different conditions using the Langmuir-Blodgett technique. The increase of subphase temperature led to a decrease in the rigidity of the porphyrin monolayer and leads to accelerating the relaxation process of the monolayer. The chosen surface pressure (4, 5, 15 and 35 mN/m) affected the stability of the floating monolayer. The higher miscibility of the monolayers was obtained at the mole fraction of porphyrin = 0.333. The change in the phase of monolayers surface was reported on the basis of surface potential data. The morphology properties of the mixed systems transferred on silicon substrates by Schaeffer method are studied.
期刊介绍:
Providing a common forum for all soft matter scientists, Soft Materials covers theory, simulation, and experimental research in this rapidly expanding and interdisciplinary field. As soft materials are often at the heart of modern technologies, soft matter science has implications and applications in many areas ranging from biology to engineering.
Unlike many journals which focus primarily on individual classes of materials or particular applications, Soft Materials draw on all physical, chemical, materials science, and biological aspects of soft matter. Featured topics include polymers, biomacromolecules, colloids, membranes, Langmuir-Blodgett films, liquid crystals, granular matter, soft interfaces, complex fluids, surfactants, gels, nanomaterials, self-organization, supramolecular science, molecular recognition, soft glasses, amphiphiles, foams, and active matter.
Truly international in scope, Soft Materials contains original research, invited reviews, in-depth technical tutorials, and book reviews.