{"title":"基于深度迁移学习的事后高分辨率正射影像损伤评估","authors":"G. Abdi, M. Esfandiari, S. Jabari","doi":"10.1139/geomat-2021-0014","DOIUrl":null,"url":null,"abstract":"Post-disaster building damage assessment is an important application of remote sensing. The increasing resolution of remote sensing imaging systems and state-of-the-art deep learning networks has facilitated damage assessment. However, most existing methods in the literature concentrate on damage/non-damage classification only in specific disaster types/areas using pre- and post-event images. Furthermore, site visits are inevitable to assess the level of damage to structures. Therefore, the main objective of this study was to utilize deep transfer learning over a pre-trained network and extend it to a damage assessment framework. The network is fine-tuned to identify four different damage levels: non-damage, minor damage, major damage, and collapsed, using only post-event images taken from different disaster types/areas. To evaluate the proposed framework, we carried out three experiments on Hurricane Irma in Sint Maarten, Hurricane Dorian in Abaco Islands, and Woolsey Fire using post-event orthophotos derived from unmanned aerial vehicle (UAV) images. The results of over 80% overall accuracy confirm that with a structured learning scenario, it is possible to use transfer learning on very high-resolution remote sensing images to classify the level of structural damage.","PeriodicalId":35938,"journal":{"name":"Geomatica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A deep transfer learning-based damage assessment on post-event very high-resolution orthophotos\",\"authors\":\"G. Abdi, M. Esfandiari, S. Jabari\",\"doi\":\"10.1139/geomat-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Post-disaster building damage assessment is an important application of remote sensing. The increasing resolution of remote sensing imaging systems and state-of-the-art deep learning networks has facilitated damage assessment. However, most existing methods in the literature concentrate on damage/non-damage classification only in specific disaster types/areas using pre- and post-event images. Furthermore, site visits are inevitable to assess the level of damage to structures. Therefore, the main objective of this study was to utilize deep transfer learning over a pre-trained network and extend it to a damage assessment framework. The network is fine-tuned to identify four different damage levels: non-damage, minor damage, major damage, and collapsed, using only post-event images taken from different disaster types/areas. To evaluate the proposed framework, we carried out three experiments on Hurricane Irma in Sint Maarten, Hurricane Dorian in Abaco Islands, and Woolsey Fire using post-event orthophotos derived from unmanned aerial vehicle (UAV) images. The results of over 80% overall accuracy confirm that with a structured learning scenario, it is possible to use transfer learning on very high-resolution remote sensing images to classify the level of structural damage.\",\"PeriodicalId\":35938,\"journal\":{\"name\":\"Geomatica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/geomat-2021-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/geomat-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
A deep transfer learning-based damage assessment on post-event very high-resolution orthophotos
Post-disaster building damage assessment is an important application of remote sensing. The increasing resolution of remote sensing imaging systems and state-of-the-art deep learning networks has facilitated damage assessment. However, most existing methods in the literature concentrate on damage/non-damage classification only in specific disaster types/areas using pre- and post-event images. Furthermore, site visits are inevitable to assess the level of damage to structures. Therefore, the main objective of this study was to utilize deep transfer learning over a pre-trained network and extend it to a damage assessment framework. The network is fine-tuned to identify four different damage levels: non-damage, minor damage, major damage, and collapsed, using only post-event images taken from different disaster types/areas. To evaluate the proposed framework, we carried out three experiments on Hurricane Irma in Sint Maarten, Hurricane Dorian in Abaco Islands, and Woolsey Fire using post-event orthophotos derived from unmanned aerial vehicle (UAV) images. The results of over 80% overall accuracy confirm that with a structured learning scenario, it is possible to use transfer learning on very high-resolution remote sensing images to classify the level of structural damage.
GeomaticaSocial Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍:
Geomatica (formerly CISM Journal ACSGC), is the official quarterly publication of the Canadian Institute of Geomatics. It is the oldest surveying and mapping publication in Canada and was first published in 1922 as the Journal of the Dominion Land Surveyors’ Association. Geomatica is dedicated to the dissemination of information on technical advances in the geomatics sciences. The internationally respected publication contains special features, notices of conferences, calendar of event, articles on personalities, review of current books, industry news and new products, all of which keep the publication lively and informative.