{"title":"复方ABB C1的抗炎作用、保护肠道屏障完整性和促进吞噬作用","authors":"M. Tintoré, J. Cuñé, V. Vetvicka, C. de Lecea","doi":"10.20944/preprints202212.0382.v2","DOIUrl":null,"url":null,"abstract":"This study evaluated the anti-inflammatory effects, the protection of gut barrier integrity, and the stimulation of phagocytosis in peripheral cells of a nutritional supplement based on a synergistic combination of yeast-based ingredients with a unique 1,3/1,6-glucan complex and a consortium of postbiotic Saccharomyces cerevisiae rich in selenium and zinc. The anti-inflammatory effect in caco-2 cells in the presence and absence of a pro-inflammatory challenge (tumour necrosis factor alpha [TNF-α]/interferon gamma [IFN-ɣ]) showed statistically significant reductions in IFN-ɣ induced protein-10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) levels vs. controls (p < 0.001). Disruption of the gut integrity in the presence or absence of Escherichia coli (ETEC H10407) showed transepithelial electrical resistance (TEER) values higher in the ABB C1® group after 6 h of testing. Spontaneous build-up of the gut epithelium monolayer over 22 days was also greater in the ABB C1® condition vs. a negative control. ABB C1® showed a significantly higher capacity to stimulate phagocytosis as compared with controls of algae β-1,3-glucan and yeast β-1,3/1,6 glucan (p < 0.001). This study supports the mechanism of action by which ABB C1® may improve the immune response and be useful to prevent infection and allergy in clinical practice.","PeriodicalId":93800,"journal":{"name":"Nutraceuticals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Inflammatory Effects, Protection of Gut Barrier Integrity and Stimulation of Phagocytosis of Postbiotic Combination ABB C1\",\"authors\":\"M. Tintoré, J. Cuñé, V. Vetvicka, C. de Lecea\",\"doi\":\"10.20944/preprints202212.0382.v2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluated the anti-inflammatory effects, the protection of gut barrier integrity, and the stimulation of phagocytosis in peripheral cells of a nutritional supplement based on a synergistic combination of yeast-based ingredients with a unique 1,3/1,6-glucan complex and a consortium of postbiotic Saccharomyces cerevisiae rich in selenium and zinc. The anti-inflammatory effect in caco-2 cells in the presence and absence of a pro-inflammatory challenge (tumour necrosis factor alpha [TNF-α]/interferon gamma [IFN-ɣ]) showed statistically significant reductions in IFN-ɣ induced protein-10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) levels vs. controls (p < 0.001). Disruption of the gut integrity in the presence or absence of Escherichia coli (ETEC H10407) showed transepithelial electrical resistance (TEER) values higher in the ABB C1® group after 6 h of testing. Spontaneous build-up of the gut epithelium monolayer over 22 days was also greater in the ABB C1® condition vs. a negative control. ABB C1® showed a significantly higher capacity to stimulate phagocytosis as compared with controls of algae β-1,3-glucan and yeast β-1,3/1,6 glucan (p < 0.001). This study supports the mechanism of action by which ABB C1® may improve the immune response and be useful to prevent infection and allergy in clinical practice.\",\"PeriodicalId\":93800,\"journal\":{\"name\":\"Nutraceuticals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutraceuticals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints202212.0382.v2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutraceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202212.0382.v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-Inflammatory Effects, Protection of Gut Barrier Integrity and Stimulation of Phagocytosis of Postbiotic Combination ABB C1
This study evaluated the anti-inflammatory effects, the protection of gut barrier integrity, and the stimulation of phagocytosis in peripheral cells of a nutritional supplement based on a synergistic combination of yeast-based ingredients with a unique 1,3/1,6-glucan complex and a consortium of postbiotic Saccharomyces cerevisiae rich in selenium and zinc. The anti-inflammatory effect in caco-2 cells in the presence and absence of a pro-inflammatory challenge (tumour necrosis factor alpha [TNF-α]/interferon gamma [IFN-ɣ]) showed statistically significant reductions in IFN-ɣ induced protein-10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) levels vs. controls (p < 0.001). Disruption of the gut integrity in the presence or absence of Escherichia coli (ETEC H10407) showed transepithelial electrical resistance (TEER) values higher in the ABB C1® group after 6 h of testing. Spontaneous build-up of the gut epithelium monolayer over 22 days was also greater in the ABB C1® condition vs. a negative control. ABB C1® showed a significantly higher capacity to stimulate phagocytosis as compared with controls of algae β-1,3-glucan and yeast β-1,3/1,6 glucan (p < 0.001). This study supports the mechanism of action by which ABB C1® may improve the immune response and be useful to prevent infection and allergy in clinical practice.