电弧熔炼法从矿山废料中直接生产Fe-Cr-Ni-Mn粗合金

IF 0.9 Q4 ENGINEERING, CHEMICAL Indian Chemical Engineer Pub Date : 2022-10-09 DOI:10.1080/00194506.2022.2128904
P. Nikhil, A. Chaubey, P. Rajput, M. Madan, B. Bhoi
{"title":"电弧熔炼法从矿山废料中直接生产Fe-Cr-Ni-Mn粗合金","authors":"P. Nikhil, A. Chaubey, P. Rajput, M. Madan, B. Bhoi","doi":"10.1080/00194506.2022.2128904","DOIUrl":null,"url":null,"abstract":"ABSTRACT The utilisation of mine waste/low-grade ores has become a major concern for the mining and metallurgical industries. Day by day, high-grade ores are rapidly depleted and fines/low-grade ores are dumped in the mining site, becoming a source of pollution and taking up a lot of area. To overcome the above problem, a novel smelting reduction technology was directly used to utilise low-grade/mine waste as an alternative raw material for the production of crude alloy and further for stainless steel. In this work, Fe-Cr-Ni-Mn crude alloy was directly produced from the mine waste/ low-grade ores by a high-temperature arc smelting process. The dried composite pellets were prepared using chromite overburden (COB), chrome ore fines (Cr ore fines), and lean-grade manganese ore (LG-Mn ore) in the ratio 4:3:3 at a 500 g scale. The effect of slag basicity (0.1–0.8) on metal concentration and recovery was studied and optimised for maximum metal recovery (Fe, Cr, Ni, and Mn) in the direct smelting experiments. The Fe-Cr-Ni-Mn crude alloy having 71.6% Fe, 22.69% Cr, 1.02% Ni, 0.972% Mn, and 2.41% C at 0.4 basicity was successfully produced with a metal recovery of 63.1% at ∼1700°C. GRAPHICAL ABSTRACT","PeriodicalId":13430,"journal":{"name":"Indian Chemical Engineer","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct production of Fe-Cr-Ni-Mn crude alloy from the mine waste by arc smelting process\",\"authors\":\"P. Nikhil, A. Chaubey, P. Rajput, M. Madan, B. Bhoi\",\"doi\":\"10.1080/00194506.2022.2128904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The utilisation of mine waste/low-grade ores has become a major concern for the mining and metallurgical industries. Day by day, high-grade ores are rapidly depleted and fines/low-grade ores are dumped in the mining site, becoming a source of pollution and taking up a lot of area. To overcome the above problem, a novel smelting reduction technology was directly used to utilise low-grade/mine waste as an alternative raw material for the production of crude alloy and further for stainless steel. In this work, Fe-Cr-Ni-Mn crude alloy was directly produced from the mine waste/ low-grade ores by a high-temperature arc smelting process. The dried composite pellets were prepared using chromite overburden (COB), chrome ore fines (Cr ore fines), and lean-grade manganese ore (LG-Mn ore) in the ratio 4:3:3 at a 500 g scale. The effect of slag basicity (0.1–0.8) on metal concentration and recovery was studied and optimised for maximum metal recovery (Fe, Cr, Ni, and Mn) in the direct smelting experiments. The Fe-Cr-Ni-Mn crude alloy having 71.6% Fe, 22.69% Cr, 1.02% Ni, 0.972% Mn, and 2.41% C at 0.4 basicity was successfully produced with a metal recovery of 63.1% at ∼1700°C. GRAPHICAL ABSTRACT\",\"PeriodicalId\":13430,\"journal\":{\"name\":\"Indian Chemical Engineer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Chemical Engineer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00194506.2022.2128904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Chemical Engineer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00194506.2022.2128904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct production of Fe-Cr-Ni-Mn crude alloy from the mine waste by arc smelting process
ABSTRACT The utilisation of mine waste/low-grade ores has become a major concern for the mining and metallurgical industries. Day by day, high-grade ores are rapidly depleted and fines/low-grade ores are dumped in the mining site, becoming a source of pollution and taking up a lot of area. To overcome the above problem, a novel smelting reduction technology was directly used to utilise low-grade/mine waste as an alternative raw material for the production of crude alloy and further for stainless steel. In this work, Fe-Cr-Ni-Mn crude alloy was directly produced from the mine waste/ low-grade ores by a high-temperature arc smelting process. The dried composite pellets were prepared using chromite overburden (COB), chrome ore fines (Cr ore fines), and lean-grade manganese ore (LG-Mn ore) in the ratio 4:3:3 at a 500 g scale. The effect of slag basicity (0.1–0.8) on metal concentration and recovery was studied and optimised for maximum metal recovery (Fe, Cr, Ni, and Mn) in the direct smelting experiments. The Fe-Cr-Ni-Mn crude alloy having 71.6% Fe, 22.69% Cr, 1.02% Ni, 0.972% Mn, and 2.41% C at 0.4 basicity was successfully produced with a metal recovery of 63.1% at ∼1700°C. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Chemical Engineer
Indian Chemical Engineer ENGINEERING, CHEMICAL-
CiteScore
3.00
自引率
6.70%
发文量
33
期刊最新文献
Modelling of chemical processes using artificial neural network Optimisation and evaluation of reactive eriochrome black T dye removal on magnetic iron modified with sky fruit from an aqueous solution A holistic analysis of chemical process performance using pinch technology Valorisation of chewing gum production waste in bioethanol production: a response surface methodology study Exfoliated clay-polymer nanocomposite as a promising delivery system for bovine serum albumin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1